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Abstract

This paper is an introduction to weak solutions of partial differen-
tial equations (PDEs), an essential tool for any mathematician working
in the field of PDEs. Our aim is to motivate and present the basic the-
ory of weak solutions of linear elliptic operators. The prerequisites are
multivariable calculus, measure theory, and basic functional analysis.
Preferably the reader has some acquaintance with PDEs. As such this
paper should be accessible to most beginning graduate students.

1 Introduction

Partial differential equations (PDEs) play an important role in many scientific
disciplines outside mathematics. Most physical laws are described by partial
differential equations. A classical example is Poisson’s equation, which
arises when computing electrical potentials, defined on a domain 2 C R”,
n > 2as
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Au(x) = ; asz. =0, xeQ.
Many PDEs of interest can be very difficult to solve. In fact there are many
equations which it is unclear whether they admit solutions. One approach to
prove the existence of solutions is based on the idea to consider equations in
a so called weak sense. This led to the concept of weak solutions which we
will introduce in this paper.

In section 2 we briefly discuss classical solutions of PDEs and their limi-
tations. Section 3 gives a gentle introduction to Sobolev spaces, which are
necessary to formulate the definition of weak solutions. Finally in section 4
we introduce weak solutions and discuss their usefulness.

In this text £ C R™ will denote an open bounded set and we consider
functions with domain € and image in R. For notational convenience we
use the notation d; instead of % to denote the ordinary partial derivative
given by the difference quotient
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We will consider a general class of equations on the form

Lu(x) = f(x), xe€Q,

u(x) =0, x €99, 1

where the operator, L is given by

Lu== 3 0;(a’(0)0iu(x) + Y b (0)du(x) + c(u). @)
i=1

i,j=1

The main result is presented in section four which says the there exists
solutions to equation (1) in the weak sense if we impose some restrictions
on the differential operator L.

2 Classical PDE Theory

A PDE is said to be well posed if:
1. It exist a solution to the equation.
2. The solution unique.
3. The solution is continuous.

A solution which is unique and C* differentiable where k is the order the
equation is said to be a classical solution. E.g. a unique C? solution to
Poisson’s equation would be a classical solution. We will not be concerned
with classical solutions in this text, however they are studied in detail in
many textbooks. Two books which treat much of the classical theory are
[Eval0] and [Fol95].

As we mentioned there are many equations for which it is impossible to prove
the existence of classical solutions. The domain and boundary conditions
play a large role in proving existence of solutions. The idea behind weak
solutions is to consider a larger class of functions as possible solutions than
the standard classical solutions (which are at least C*¥ continuous). The
proper spaces to search for these solutions are the so called Sobolev spaces,
Wk-P (), which we introduce in the next section.

Consider a differential operator on the form presented in equation (2). We
will assume that the coefficients functions a%, b’, ¢ are members of C?(2)
and that a” = a’'. We define

Ax) = [a7(V)]ij,  bx) = (B'(x),...,0"(x)).
Then A is a symmetric matrix and we can write equation (2) as
Lu =—-V-A(x)Vu(x) +b(x) - Vu(x) 4+ c(x)u(x),

where V := (d1,...,0,).



Definition 2.1. A partial differential operator, L, on the form

Lu=—- Y 8;(a’(x)dux) + Y _ b (x)0u(x) + c(x)u(x),

i,j=1
is said to be uniformly elliptic if there exists a positive constant 7 such that

> d (0)EE; = nlEP,

i,j=1
fora.e. x € Q and every & € R".

The criterion for uniform ellipticity is equivalent to the matrix A(x) being
positive definite with all eigenvalues satisfying A; > n for a.e. x € Q. A
simple example of an elliptic operator is the Laplacian given by

—Au(x) =) d5u(x).
ji=1

The corresponding coefficients are

A(x) = [8,']'], b=0, c¢=0.

3 Sobolev Spaces

Sobolev spaces are subspaces of L? spaces which are suitable spaces to look
for solutions of differential equations. We will just scratch on their surface
in this text but they are well studied. A very thorough reference is [AF03],
and most advanced textbooks on PDEs such as [GT15], [EvalO] treat them
in detail.

We start by introducing multiindex notation which simplify the notation of
mixed partial derivatives.

Definition 3.1. We say that « = (;,...,,) € N{ is a n-dimensional
multiindex of order ||, where

lt| = o1 + -+ + .

Multiindices can be used to represent differential operators. Given a multi-
index o we define,

glel
%u(x) := 5

o o
Xy e axn”

u(x).

The above shorthand can simplify expressions involving many differentials
significantly. Recall that the space L?(2) consists of all measurable func-
tions which satisfy

||f||p=/9|f|2dx<oo

The space of locally p-integrable functions is defined as

LE () :={f : f € L?(K), for every compact K C Q}.
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Definition 3.2. Given two functions u,v € L} (€2) and a multiindex « we

say that v the «-th weak derivative of u, written D%u = v, if
(—1)"’"/ ud*pdx = / vedx, Y¢eCX(Q).
Q Q

By convention we define D*u = u when o = (0,...,0). We are going
to denote the weak derivatives of first order by D ;u. l.e. D ju is the weak
derivative corresponding to the multiindex with zeros in every entry except
for the j-th position where it is 1. The weak derivatives can be thought of
as an extension of classical derivatives. If u € C'(2) then an integration
by parts shows that

—fuaj(pdx=/8jugodx, Vo eCXr(Q).
Q Q

Thus d,u = D,u, i.e. they belong to the same function class in L?(£2).
Which means that if the derivative exists in the classical sense it is also the
weak derivative of u. We are now ready to define the Sobolev spaces.

Definition 3.3. For ¥ € N and p > 1 we define the Sobolev space
WkP(Q) C LP(R) as the space of functions for which all weak deriva-
tives up to order k exists and are in L?(£2).

Itis easy to show that weak derivatives satisfies some properties we recognise
from classical derivatives, such as linearity and a chain rule. We state that
result below as a lemma.

Lemma 3.1 (Properties of weak derivatives). Let u,v € W*?(Q), f €
Ck(SZ) and A,v € R, then

Dj(Au +vv) =ADju+vDjv,
Dj(fu)=D;(f)u+ D;u) f

Sobolev spaces are linear spaces and the space W*?(Q2) can be equipped
with the norm

el = Z/ D*u|? dx
Q

loe| <k

This norm makes W*-?(Q) complete, i.e. a Banach space. The closure of
CX(RQ) in Wk-P(Q) is an important subspace denoted by Wok’p (2). When
k = 1and p = 2, then Wol’z(Q) is Hilbert space (is often denoted as H, ).
The Hilbert space structure of WOI’2 is used to prove the existence of weak
solutions for second order linear elliptic operators.

4 \Weak solutions

In this section we define weak solutions and state one of the existence
theorems for elliptic operators. Let us restate the equation from the intro-
duction

Lu=f xeQ,

3
u =0, x €09, )



where the operator, L is given by

Lu=— Y 8;(a"du)+ ) b'ou+cu. )

i,j=1 i=1

Let ¢ € C®(2) and assume that u € C?(R) is a classical solution of
equation (3). Then we may multiply both sides of equation (3) by ¢, and
integrate which yields identity

/(_ 2": aj(aijaiu)+2n:bi8iu+cu)godx:/ fodx.
Q i=1 @

i,j=1

An integration by parts applied to the first term of the left hand side integral
yields the identity

/QZaijajgoa,-u-l—(;biaiu+cu>cpdx=/52fgodx. (5)

ij=1

Note that even though the the operator L is a second order operator, equation
(5) only involves first order derivatives. Equation (5) also makes sense
for elements of WOI’Z(SZ) if we replace the classical derivatives with weak
derivatives. This induces a bilinear form L : WOI’Z(Q) X WOI’Z(Q) — R,
defined by

L(u,p) = /Q Z aij8j<p8iu + (Zbiaiu + cu)@ dx.
' i=1

i,j=1

The definition of weak derivatives is based on this idea.

Definition 4.1. An element u € Wol’z(SZ) is said to be a weak solution of
equation (4) if

Llug) = /Q fodx, Ve W@ ©)

The power of the definition of weak solutions is that W, is a Hilbert
space, which shows that equation (6) is a Hilbert space equation. Hence
tools from functional analysis can be applied to solve the equation in the
weak sense. An application of the Fredholm Alternative and Lax-Milgram’s
Theorem combined with several technical estimates yields the following
theorem.

Theorem 4.1. Let L be a uniformly elliptic partial differential operator on
the form

Ly =— Z d;j(a” d;u) + Zbiaiu + cu,
ij=1 i=1

with coefficients a”/ , b, ¢ in L%°(2). Then one of the following holds.



For each f € L*(Q) there exists a unique solution to the problem

Lu=finQ, u=0, ond.

or there exists a weak solution u # 0 of the homogeneous equation

Lu=0,inQ2, u=0, ondf.

Theorem 4.1 can be used to prove the existence of solutions to many elliptic
PDEs in the weak sense. However existence is only one part of the theory
of weak solutions. After proving the existence of solutions it can often be
shown that the solution is smoother than Wol’z. This is known as regularity
theory and regularity of solutions.

Two of 20th century most famous mathematicians John Nash and Ennio De
Giorgi contributed to the regularity theory of elliptic operators and proved
that with a sufficiently smooth boundary and right hand side in equation
(3) the solutions are Holder continuous [Nas58], [De 57]. Moser found a
new proof of this result inspired by De Giorgi [Mos60]. Their techniques
has been applied to other classes of PDEs and are often referred to as De
Giorgi-Nash-Moser techniques.
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