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e Consider a probability space (€2, F,P) and real valued random

variable X : Q — R, with distribution . :=Po X~
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e Consider a probability space (€2, F,P) and real valued random
variable X : Q — R, with distribution . :=Po X~

@ In many applications we are interested in computing the expected
value E[X]

0 = E[X] :/QXd]P’.
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e Consider a probability space (€2, F,P) and real valued random
variable X : Q — R, with distribution . :=Po X~

@ In many applications we are interested in computing the expected
value E[X]

0 = E[X] :/QXd]P’.

@ In practice, it may not be possible to compute this integral and
Monte Carlo (MC) methods are often used to simulate 6.
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Monte Carlo

e Origins can be traced to the Manhattan Project (Von Neumann &
Ulam)
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Monte Carlo

e Origins can be traced to the Manhattan Project (Von Neumann &

Ulam)
@ The crude Monte Carlo (CMC) estimator of 6
1 n
On(w) = — > Xi(w) ~ E[X].
i=1

@ Main idea behind MC-method: Strong law of large numbers (SLLN)
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Monte Carlo

e Origins can be traced to the Manhattan Project (Von Neumann &

Ulam)
@ The crude Monte Carlo (CMC) estimator of 6
1 n
On(w) = — > Xi(w) ~ E[X].
i=1

@ Main idea behind MC-method: Strong law of large numbers (SLLN)

implies that 6,(w) — 6 almost surely.
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Convergence rate of the CMC estimator

@ SLLN implies that 8,(w) — 6 almost surely, but how large does n
have to be?

<& W,
Zuplte
3 z
2 &
M3

Johan Ericsson LDP and Weak Convergence June 13, 2024 5/30



Convergence rate of the CMC estimator

@ SLLN implies that 8,(w) — 6 almost surely, but how large does n
have to be?

@ The convergence rate of the CMC estimator is O(1/+/n).
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Convergence rate of the CMC estimator

@ SLLN implies that 8,(w) — 6 almost surely, but how large does n
have to be?

@ The convergence rate of the CMC estimator is O(1/+/n).
o If we want P(|0, — 0] < €]6]), then we need

2 2
21—

>
n =
~ 8292

@ The variance also controls the error!
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Convergence rate of the CMC estimator

@ SLLN implies that 8,(w) — 6 almost surely, but how large does n
have to be?

@ The convergence rate of the CMC estimator is O(1/+/n).
o If we want P(|0, — 0] < €]6]), then we need

2 2
21—

>
n =
~ 8292

@ The variance also controls the error!
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Rare Events

@ In many cases of interest 0 is very small.
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@ In many cases of interest 0 is very small.
o Rare event if A € F satisfy P(A) < 1 (less than10=3 or 10=% in

magnitude).
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@ In many cases of interest 0 is very small.

o Rare event if A € F satisfy P(A) < 1 (less than10=3 or 10=% in
magnitude).

@ The random variable 15 can be used to find the rare event probability:
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In many cases of interest 0 is very small.

Rare event if A € F satisfy P(A) < 1 (less than1073 or 10~ in
magnitude).

The random variable 15 can be used to find the rare event probability:

p::IP’(A):/Ad]P’:/QlAdIP’.
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In many cases of interest 0 is very small.

Rare event if A € F satisfy P(A) < 1 (less than1073 or 10~ in
magnitude).

The random variable 15 can be used to find the rare event probability:

p::IP’(A):/Ad]P’:/QlAdIP’.
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@ The CMC estimator is in this context be given by

1
n=— Xi, Xi~B ,
0 - ; 1 e(p)
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@ The CMC estimator is in this context be given by

1
n=— Xi, Xi~B ,
0 - ; 1 e(p)

@ The variance is given by the expression

V[1a] = p(1 - p).
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@ The CMC estimator is in this context be given by

1
n=— Xi, Xi~B ,
0 - ; 1 e(p)

@ The variance is given by the expression

V[1a] = p(1 - p).

@ For rare events the variance and expectation are almost the same!

2
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Rare Events and Large Deviations

@ MC methods for rare events are computationally demanding.
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Rare Events and Large Deviations

@ MC methods for rare events are computationally demanding.

@ Another approach: Large Deviations
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Rare Events and Large Deviations

@ MC methods for rare events are computationally demanding.

@ Another approach: Large Deviations
@ Used to approximate probabilities at an exponential scale.
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Rare Events and Large Deviations

@ MC methods for rare events are computationally demanding.
@ Another approach: Large Deviations

@ Used to approximate probabilities at an exponential scale.

°

First mathematical results in the theory of large deviations was
published in 1938 [1], by Harald Cramér (actuary and affiliated with
Stockholm University).

Cramér's Motivation was insurance mathematics and ruin probabilites.
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Rare Events and Large Deviations

MC methods for rare events are computationally demanding.
Another approach: Large Deviations

Used to approximate probabilities at an exponential scale.

First mathematical results in the theory of large deviations was
published in 1938 [1], by Harald Cramér (actuary and affiliated with
Stockholm University).

o Cramér’'s Motivation was insurance mathematics and ruin probabilites.

@ S.R.S. Varadhan introduced the modern mathematical theory of large
deviations. Seminal paper: [5] (Abel Prize for his contributions).
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Large Deviations

On a new limit theorem in probability theory
(Sur un nouveau théoréme-limite de la théorie des probabilités)

(2]
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Large Deviations

@ A sequence (X,) of i.i.d. random variables taking values in a
Hausdorff topological space X.

@ In the theory of large deviations we want to find a rate function
I : X — [0,00], such that

lim P(X, € A) ~ e "infreal()

n—oo

@ Can be used to approximate rare event probabilites.
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Large Deviations

A sequence (X,) of i.i.d. random variables taking values in a
Hausdorff topological space X.

In the theory of large deviations we want to find a rate function
I : X — [0,00], such that

lim P(X, € A) ~ e "infreal()

n—oo

Can be used to approximate rare event probabilites.

Can be used to analyze the convergence of MC estimators (substitute
Xn = 0p).
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Empirical Distributions

@ Another interpretation of Monte Carlo estimators can be done

through their empirical distributions.
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Empirical Distributions

@ Another interpretation of Monte Carlo estimators can be done
through their empirical distributions.

@ Let X : 2 = X be a random variable. If f : X — R is measurable,
then 7(X) is a real valued random variable.
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Empirical Distributions

@ Another interpretation of Monte Carlo estimators can be done
through their empirical distributions.

@ Let X : 2 = X be a random variable. If f : X — R is measurable,
then 7(X) is a real valued random variable.

o Let M,(X’) denote the collection of all probability measures on X.
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Empirical Distributions

@ Another interpretation of Monte Carlo estimators can be done
through their empirical distributions.

@ Let X : 2 = X be a random variable. If f : X — R is measurable,
then 7(X) is a real valued random variable.

o Let M,(X’) denote the collection of all probability measures on X.

§:Q = M(X), Ox((A) = {(1) §E3 ; j\\,
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Empirical Distributions

@ Another interpretation of Monte Carlo estimators can be done
through their empirical distributions.

@ Let X : 2 = X be a random variable. If f : X — R is measurable,
then 7(X) is a real valued random variable.
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Empirical Distributions

@ Empirical distribution of the CMC estimator:

n

1
Lo(w) = — Z OX;(w)-

n <
i=1
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Empirical Distributions

@ Empirical distribution of the CMC estimator:
1 n
Ly(w) = - Z OX;(w)-

i=1

@ Integrating over X" with respect to the measure L,(w):

1 1
/X de,,(oJ) = ; ;/X fddxl_(w) = ; ; f(X,(w))
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Empirical Distributions

@ Empirical distribution of the CMC estimator:
n

1
Lo(w) = — Z OX;(w)-

n <
i=1

@ Integrating over X" with respect to the measure L,(w):
[ rat =23 [ favgy = 230
& nisi/x I i3

@ Does L, converge to the distribution p of X in M (X)?
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Topologies on M(X)

@ Convergence is a topological concept.
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Topologies on M(X)

@ Convergence is a topological concept.
@ The empirical distributions of some MC-estimators are not probability

measures.
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Topologies on M(

@ Convergence is a topological concept.
@ The empirical distributions of some MC-estimators are not probability

measures.
Three important spaces of measures:
@ M(X) finite signed measures on X" (is a linear space)

@ M_(X) nonnegative finite measures on X
@ M, (X) probability measures on X
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The T-topology

@ Let f: X — R be a bounded measurable function and p € M(X).

Then
mmz/fw,
X

is a dual pairing.
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The T-topology

@ Let f: X — R be a bounded measurable function and p € M(X).

Then
mmz/fw,
X

is a dual pairing.
M(X) — R generate a weak topology on M(X):

@ The maps (f,-)
the 7-topology
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The T-topology

@ Let f: X — R be a bounded measurable function and p € M(X).

Then

is a dual pairing.

@ The maps (f,-) :

the 7-topology

M(X) — R generate a weak topology on M(X):

(o) = | fau,

@ i, converges to pu in the 7-topology iff

«

Iim/ fdua:/ fdu,
X X

for every bounded measurable function f.

Johan Ericsson
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The topology of weak convergence

@ The 7-topology does not capture any topological information of X.
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The topology of weak convergence

@ The 7-topology does not capture any topological information of X.
o If X is a metrizable space we can restrict the class of "test functions”.
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The topology of weak convergence

@ The 7-topology does not capture any topological information of X.

o If X is a metrizable space we can restrict the class of "test functions”.

Definition

Let X' be a metrizable space, then a net () in M(X') converges weakly
to u € M(X) if

«

Iim/ fdue :/ fdu, foreveryf e Cp(X).
X X
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The topology of weak convergence

@ The 7-topology does not capture any topological information of X.

o If X is a metrizable space we can restrict the class of "test functions”.

Definition

Let X' be a metrizable space, then a net () in M(X') converges weakly
to u € M(X) if

Iim/ fdue :/ fdu, foreveryf e Cp(X).
X X

«

o Usually denoted o, = p.
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The topology of weak convergence

@ The 7-topology does not capture any topological information of X.

o If X is a metrizable space we can restrict the class of "test functions”

Definition

Let X' be a metrizable space, then a net (o) in M(X') converges weakly
to u € M(X) if

Iim/ fdua:/ fdu, foreveryf e Cp(X).
* Jx X

o Usually denoted o, = p.

The topology of weak convergence is weaker (has less open sets) than the
T-topology!
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@ Weak convergence of measures is often used in probability theory.
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@ Weak convergence of measures is often used in probability theory.
@ In Ch. 3 of the thesis we study the the 7-topology and the topology
of weak convergence.
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@ Weak convergence of measures is often used in probability theory.

@ In Ch. 3 of the thesis we study the the 7-topology and the topology
of weak convergence.

e Extend many results from M;(X’) to M, (X).
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@ Weak convergence of measures is often used in probability theory.

@ In Ch. 3 of the thesis we study the the 7-topology and the topology
of weak convergence.

e Extend many results from M;(X’) to M, (X).
@ Builds upon the work of Varadarajan in [4].
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Convergence of MC-estimators

Varadarajan proved in 1958 the empirical distributions of the
CMC-estimator converges weakly [3].
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Convergence of MC-estimators

Varadarajan proved in 1958 the empirical distributions of the
CMC-estimator converges weakly [3].

Let X be a separable metrizable space and (X;) a sequence of i.i.d.
random variables taking values in X with law p. Then the empirical
distributions L,, converge weakly to p almost surely, i.e.

P{weQ : Ly(w) = p}=1.

We extend this result to the empirical distribution of the importance
sampling estimator.
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Large Deviations

@ Let X be a topological space and BB a g-algebra on X" that contain all
open sets.
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Large Deviations

@ Let X be a topological space and BB a g-algebra on X" that contain all

open sets.
e A function f : X — [0, 00] is said to be a good rate function if it is
lower semicontinuous with compact level sets

{xe X : f(x)<t}, te][0c].
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Large Deviations

@ Let X be a topological space and BB a g-algebra on X" that contain all
open sets.

e A function f : X — [0, 00] is said to be a good rate function if it is
lower semicontinuous with compact level sets

{xe X : f(x)<t}, te][0c].

A sequence of probability measures (u,,) the large deviation principle
(LDP) with rate function / if

|nfl < I|m|nf Iog [1en(U)]

for every open set U, and

mfl > limsup — ! Iog [1n(C)]

n—0

NERSS,

> gE .
i3
&

OO

s
+ e
o A
%,

for every closed set C.
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Large Deviations

Main steps for proving that (u,) satisfies the LDP.
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Large Deviations

Main steps for proving that (u,) satisfies the LDP.

© Prove that (u,) satisfy the LDP lower bound:
inf I < liminf > log [jtn( U)]

v = ahg OB

for every open set U.
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Large Deviations

Main steps for proving that (u,) satisfies the LDP
© Prove that (u,) satisfy the LDP lower bound:

1
—inf I < liminf = log [1n
inf 1 < liminf — log [1n(U)]

for every open set U
@ Prove that (u,) satisfy LDP upper bound

|nfl > lim sup Iog [1n(C)]
n—0

for every closed set C
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Large Deviations

Main steps for proving that (u,) satisfies the LDP
© Prove that (u,) satisfy the LDP lower bound:

1
—inf I < liminf = log [1n
inf 1 < liminf — log [1n(U)]

for every open set U
@ Prove that (u,) satisfy LDP upper bound
|Og [11n(C)]

|nfl > lim sup
n—0

for every closed set C

© ldentification of the rate function
June 13, 2024
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Large Deviations

o If X is a regular topological space, then the rate function I is unique.
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Large Deviations

o If X is a regular topological space, then the rate function I is unique.

@ The LDP is unique!
@ The upper bound can be hard to prove...
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Large Deviations

If X is a regular topological space, then the rate function / is unique.

The LDP is unique!
The upper bound can be hard to prove...

(1) satisfies a weak large deviation principle with rate function / if it
satisfies the lower bound and

— i%fl > limsup E log [1en(K)]

n—oo N

for every compact set K C X.
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Large Deviations

If X is a regular topological space, then the rate function / is unique.
The LDP is unique!

The upper bound can be hard to prove...

(1) satisfies a weak large deviation principle with rate function / if it
satisfies the lower bound and

— i%fl > limsup E log [1en(K)]

n—oo N

for every compact set K C X.

Easier to prove a weak LDP. Can go from weak to full LDP by
proving that the sequence (u,) is exponentially tight.
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Large Deviations of empirical means

e Consider (X;) i.i.d. random variables with distribution . defined on
(Q, F,P) and taking values in the topological linear space X.
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Large Deviations of empirical means

e Consider (X;) i.i.d. random variables with distribution . defined on
(Q, F,P) and taking values in the topological linear space X.

@ The empirical means S, : Q — X, defined by

S, (w) = % 3 Xi(w).
i=1

e The distributions are given by p, =Po S, L.
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Cramér’s Theorem

Theorem (Weak Cramér's Theorem)

The sequence () of distributions of the empirical means satisfy a weak
large deviation principle with a convex rate function | = N*, and

lim E log 1in(A) = — inf A*(x),

n—oco n xXEA

for every convex and open A C X.

Here A* is the Legendre-Fenchel transform of

AN) = A, == (A) = logE [e<%X>] — log [ /X e du(x)] .
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Large Deviations and CMC

o If we want

IP’(\H,,—G\ <£]0|> >1-a
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Large Deviations and CMC

o If we want

IP’(\H,,—G\ <£]0|> >1-a

o Let
R. .= B(0,¢10]), A:=R:,
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Large Deviations and CMC

o If we want

IP’(\H,,—G\ <£]0|> >1-a

o Let
R. .= B(0,¢10]), A:=R:,
then we get
P(6, € A:) < a.

Johan Ericsson LDP and Weak Convergence June 13, 2024 23/30



Large Deviations and CMC

o If we want

IP’(\H,,—G\ <£]0|> >1-a

o Let
R. .= B(0,¢10]), A:=R:,
then we get
P(6, € A:) < a.

@ For large n we can interpret this as

pn(Ac) g e ")
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Large Deviations and CMC

@ To achieve the desired precision with confidence 1 — a we want

e—nl(AE) S Q.

NERS/,
> gE O
3
T
UH)\’)O\/

s

* P
)

%,

Johan Ericsson LDP and Weak Convergence June 13, 2024 24 /30



Large Deviations and CMC

@ To achieve the desired precision with confidence 1 — a we want

e—nl(AE) S Q.

@ Taking logarithms of both sides we get

nl(A:) > log(a)
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Large Deviations and CMC

@ To achieve the desired precision with confidence 1 — a we want
e—nl(AE) S Q.

@ Taking logarithms of both sides we get

nl(A:) > log(a)

@ Rearranging yields:

, > logla)
~ I(A:)
\%’Vfudﬁ
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Example with X ~ N(6, 0?)
o Let & = E[X] for X ~ N(0,52). Then the rate function is given by

I(x) = (ngf )

9
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Example with X ~ N(6, 0?)

o Let & = E[X] for X ~ N(0,52). Then the rate function is given by

160 = O 0F

o and
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Example with X ~ N(6, 0?)

o Let & = E[X] for X ~ N(0,52). Then the rate function is given by

160 = O 0F

o and

@ Gives the LDP bound for the sample size:

2
log(a)20
> [08la)c0
~g202

oA
o
Ty B
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Example with X ~ N(6, 0?)
o Let & = E[X] for X ~ N(0,52). Then the rate function is given by

I(x) = (ngf )

9

o and

@ Gives the LDP bound for the sample size:
2
> log(a)20 '
~o 202
@ Compare with introduction:

2 2 Y.

21—a/20 Supleet

> 3 z

n= . % IS

~ 5292 B2
June 13, 2024 25 /30
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Convexity and Large Deviations

Let f : X — [—00, 0], then the Legendre-Fenchel transformof f is the
function f : X* — [—00, 0] defined by
() =sup{(\,x) — f(x) : xe€ X}
= —inf{f(x) — (\,x) : xe X}.
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Convexity and Large Deviations

function f : X* — [—00, 0] defined by

*(\) = sup{(\, x) — f(x) :
= —inf{f(x) — (\, x)

x € X}

Cx e XY

Let f : X — [—00, 0], then the Legendre-Fenchel transformof f is the

Theorem (Biconjugate Theorem)

Let f : X — (—o0, 00| not be identically co, then f = f** if and only if f

is convex and lower semicontinuous.
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What we have not covered

@ Sanov’s Theorem and LDP for the distributions of the empirical
distributions.
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Questions

Feel free to ask any questions!
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