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Motivation

Consider a probability space (Ω,F ,P) and real valued random
variable X : Ω → R, with distribution µ := P ◦ X−1.

In many applications we are interested in computing the expected
value E[X ]

θ = E[X ] =

∫
Ω
X dP .

In practice, it may not be possible to compute this integral and
Monte Carlo (MC) methods are often used to simulate θ.
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Monte Carlo

Origins can be traced to the Manhattan Project (Von Neumann &
Ulam)

The crude Monte Carlo (CMC) estimator of θ

θn(ω) =
1

n

n∑
i=1

Xi (ω) ≈ E[X ].

Main idea behind MC-method: Strong law of large numbers (SLLN)
implies that θn(ω) → θ almost surely.
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Convergence rate of the CMC estimator

SLLN implies that θn(ω) → θ almost surely, but how large does n
have to be?

The convergence rate of the CMC estimator is O(1/
√
n).

If we want P
(
|θn − θ| < ε|θ|

)
, then we need

n ⪆
z21−α/2σ

2

ε2θ2

The variance also controls the error!
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Rare Events

In many cases of interest θ is very small.

Rare event if A ∈ F satisfy P(A) ≪ 1 (less than10−3 or 10−4 in
magnitude).

The random variable 1A can be used to find the rare event probability:

p := P(A) =
∫
A
dP =

∫
Ω
1A dP .
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Rare Events

The CMC estimator is in this context be given by

θn =
1

n

n∑
i=1

Xi , Xi ∼ Be(p),

The variance is given by the expression

V[1A] = p(1− p).

For rare events the variance and expectation are almost the same!

V[1A]
E[1A]

= 1− p, n ⪆
z21−α/2

ε2p
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Rare Events and Large Deviations

MC methods for rare events are computationally demanding.

Another approach: Large Deviations

Used to approximate probabilities at an exponential scale.

First mathematical results in the theory of large deviations was
published in 1938 [1], by Harald Cramér (actuary and affiliated with
Stockholm University).

Cramér’s Motivation was insurance mathematics and ruin probabilites.

S.R.S. Varadhan introduced the modern mathematical theory of large
deviations. Seminal paper: [5] (Abel Prize for his contributions).
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Large Deviations

On a new limit theorem in probability theory
(Sur un nouveau théorème-limite de la théorie des probabilités)

Harald Cramér (1893-1985)
Stockholm, Sweden

Translated by
Hugo Touchee

National Institute for eoretical Physics (NIeP), Stellenbosch, South Africa

15 March 2018

Original article: H. Cramér, Sur un nouveau théorème-limite de la théorie des probabilités, Colloque
consacré à la théorie des probabilités, Actualités scientiques et industrielles 736, 2-23, Hermann &
Cie, Paris, 1938.

Reprinted in: H. Cramér, Collected Works, A. Martin-Löf (Ed.), Vol. II, Springer, Berlin, 1994, p. 895-913.
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Chapitre premier
Considérons une suite 𝑍1, 𝑍2, . . . de variables aléatoires indépen-
dantes ayant toutes la même fonction de répartition 𝑉 (𝑥), et
telles que

𝐸 (𝑍𝑛) = 0, 𝐸 (𝑍2
𝑛) = 𝜎2 > 0. (1)

Désignons par 𝑊𝑛 (𝑥) la fonction de répartition de la
somme

𝑍1 + · · · + 𝑍𝑛,
et par 𝐹𝑛 (𝑥) la fonction de répartition de la variable

𝑍1 + · · · + 𝑍𝑛
𝜎
√
𝑛

.

On a donc

𝐹𝑛 (𝑥) = Prob(𝑍1 + · · · + 𝑍𝑛 ≤ 𝜎𝑥√𝑛)

et
𝐹𝑛 (𝑥) = 𝑊𝑛 (𝜎𝑥

√
𝑛). (2)

D’après le théorème limite classique de Laplace-Liapouno
(dans sa forme moderne précisée par Lindeberg et par M. Paul
Lévy) on a alors pour chaque valeur réelle xe de 𝑥

lim
𝑛→∞ 𝐹𝑛 (𝑥) = Φ(𝑥) = 1√

2𝜋

∫ 𝑥

−∞
𝑒−

𝑡2
2 𝑑𝑡. (3)

Par ce théorème, on a donc une expression asymptotique
(pour 𝑛→ ∞) de la probabilité 𝐹𝑛 (𝑥) de l’inégalité

𝑍1 + · · · + 𝑍𝑛 ≤ 𝜎𝑥√𝑛

ou, ce qui revient au même, de la probabilité 1 − 𝐹𝑛 (𝑥) de
l’inégalité

𝑍1 + · · · + 𝑍𝑛 > 𝜎𝑥
√
𝑛

𝑥 étant toujours un nombre réel indépendant de 𝑛.

Il est alors naturel de se demander ce que deviennent ces
probabilités lorsque 𝑥 peut varier avec 𝑛, en tendant vers +∞
ou vers −∞ quand 𝑛 croı̂t indéniment.

Dans ces conditions, la relation (3) ne donne que le résultat
évident

lim
𝑛→∞ 𝐹𝑛 (𝑥) =

{
1 quand 𝑥 → +∞,
0 ” 𝑥 → −∞,

qui exprime seulement que 𝐹𝑛 (𝑥) tend vers les mêmes limites
que Φ(𝑥) lorsque→ ±∞.

Pour savoir si l’équivalence asymptotique de 𝐹𝑛 (𝑥) et
Φ(𝑥) subsiste dans les conditions indiquées, on pourrait se
proposer d’étudier les rapports

1 − 𝐹𝑛 (𝑥)
1 −Φ(𝑥) pour 𝑥 → +∞, (4a)

First chapter
Consider a sequence 𝑍1, 𝑍2, . . . of independent random vari-
ables having the same cumulative distribution function [[1]]
𝑉 (𝑥) and such that

𝐸 (𝑍𝑛) = 0, 𝐸 (𝑍2
𝑛) = 𝜎2 > 0. (1)

Denote by𝑊𝑛 (𝑥) the cumulative distribution function of
the sum

𝑍1 + · · · + 𝑍𝑛,
and by 𝐹𝑛 (𝑥) the cumulative distribution function of the vari-
able

𝑍1 + · · · + 𝑍𝑛
𝜎
√
𝑛

.

We [[2]] thus have

𝐹𝑛 (𝑥) = Prob(𝑍1 + · · · + 𝑍𝑛 ≤ 𝜎𝑥√𝑛)

and
𝐹𝑛 (𝑥) = 𝑊𝑛 (𝜎𝑥

√
𝑛). (2)

Following the classical limit theorem of Laplace-Lyapunov
[[3]] (in its modern version specied by Lindeberg and by Paul
Lévy) we thus have for each real value 𝑥

lim
𝑛→∞ 𝐹𝑛 (𝑥) = Φ(𝑥) = 1√

2𝜋

∫ 𝑥

−∞
𝑒−

𝑡2
2 𝑑𝑡. (3)

From this theorem [[4]], we thus have an asymptotic ex-
pression (for 𝑛→ ∞) for the probability 𝐹𝑛 (𝑥) of the inequal-
ity

𝑍1 + · · · + 𝑍𝑛 ≤ 𝜎𝑥√𝑛
or, which amounts to the same, for the probability 1 − 𝐹𝑛 (𝑥)
of the inequality

𝑍1 + · · · + 𝑍𝑛 > 𝜎𝑥
√
𝑛

𝑥 being as before a real number independent of 𝑛.
It is thus natural to ask what happens of these probabil-

ities when 𝑥 can vary with 𝑛, going to +∞ or to −∞ when 𝑛
grows indenitely.

In these conditions, Relation (3) only gives the evident
result

lim
𝑛→∞ 𝐹𝑛 (𝑥) =

{
1 when 𝑥 → +∞,
0 ” 𝑥 → −∞,

which expresses only that 𝐹𝑛 (𝑥) converges to the same limits
as Φ(𝑥) when→ ±∞.

To see whether the asymptotic equivalence of 𝐹𝑛 (𝑥) and
Φ(𝑥) remains under the mentioned conditions indicated, we
could propose to study the ratios

1 − 𝐹𝑛 (𝑥)
1 −Φ(𝑥) when 𝑥 → +∞, (4a)

5

Figure: Translation of Cramér’s publication from French to English by Hugo Touchette
[2]
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Large Deviations

A sequence (Xn) of i.i.d. random variables taking values in a
Hausdorff topological space X .

In the theory of large deviations we want to find a rate function
I : X → [0,∞], such that

lim
n→∞

P(Xn ∈ A) ≈ e−n infx∈A I (x).

Can be used to approximate rare event probabilites.

Can be used to analyze the convergence of MC estimators (substitute
Xn = θn).
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Empirical Distributions

Another interpretation of Monte Carlo estimators can be done
through their empirical distributions.

Let X : Ω → X be a random variable. If f : X → R is measurable,
then f (X ) is a real valued random variable.

Let M1(X ) denote the collection of all probability measures on X .

δ : Ω → M1(X ), δX (ω)(A) :=

{
1, X (ω) ∈ A,

0, X (ω) /∈ A,
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Empirical Distributions

Empirical distribution of the CMC estimator:

Ln(ω) :=
1

n

n∑
i=1

δXi (ω).

Integrating over X with respect to the measure Ln(ω):∫
X
f dLn(ω) =

1

n

n∑
i=1

∫
X
f dδXi (ω) =

1

n

n∑
i=1

f
(
Xi (ω)

)

Does Ln converge to the distribution µ of X in M1(X )?
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Topologies on M(X )

Convergence is a topological concept.

The empirical distributions of some MC-estimators are not probability
measures.

Three important spaces of measures:

1 M(X ) finite signed measures on X (is a linear space)

2 M+(X ) nonnegative finite measures on X
3 M1(X ) probability measures on X
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The τ -topology

Let f : X → R be a bounded measurable function and µ ∈ M(X ).
Then

⟨f , µ⟩ =
∫
X
f dµ ,

is a dual pairing.

The maps ⟨f , ·⟩ : M(X ) → R generate a weak topology on M(X ):
the τ -topology

µα converges to µ in the τ -topology iff

lim
α

∫
X
f dµα =

∫
X
f dµ ,

for every bounded measurable function f .
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The topology of weak convergence

The τ -topology does not capture any topological information of X .

If X is a metrizable space we can restrict the class of ”test functions”.

Definition

Let X be a metrizable space, then a net (µα) in M(X ) converges weakly
to µ ∈ M(X ) if

lim
α

∫
X
f dµα =

∫
X
f dµ , for every f ∈ Cb(X ).

Usually denoted µα =⇒ µ.

The topology of weak convergence is weaker (has less open sets) than the
τ -topology!
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The topology of weak convergence is weaker (has less open sets) than the
τ -topology!
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Weak convergence of measures is often used in probability theory.

In Ch. 3 of the thesis we study the the τ -topology and the topology
of weak convergence.

Extend many results from M1(X ) to M+(X ).

Builds upon the work of Varadarajan in [4].

Johan Ericsson LDP and Weak Convergence June 13, 2024 16 / 30



Weak convergence of measures is often used in probability theory.

In Ch. 3 of the thesis we study the the τ -topology and the topology
of weak convergence.

Extend many results from M1(X ) to M+(X ).

Builds upon the work of Varadarajan in [4].

Johan Ericsson LDP and Weak Convergence June 13, 2024 16 / 30



Weak convergence of measures is often used in probability theory.

In Ch. 3 of the thesis we study the the τ -topology and the topology
of weak convergence.

Extend many results from M1(X ) to M+(X ).

Builds upon the work of Varadarajan in [4].

Johan Ericsson LDP and Weak Convergence June 13, 2024 16 / 30



Weak convergence of measures is often used in probability theory.

In Ch. 3 of the thesis we study the the τ -topology and the topology
of weak convergence.

Extend many results from M1(X ) to M+(X ).

Builds upon the work of Varadarajan in [4].

Johan Ericsson LDP and Weak Convergence June 13, 2024 16 / 30



Convergence of MC-estimators

Varadarajan proved in 1958 the empirical distributions of the
CMC-estimator converges weakly [3].

Theorem

Let X be a separable metrizable space and (Xi ) a sequence of i.i.d.
random variables taking values in X with law µ. Then the empirical
distributions Ln converge weakly to µ almost surely, i.e.

P({ω ∈ Ω : Ln(ω) =⇒ µ} = 1.

We extend this result to the empirical distribution of the importance
sampling estimator.
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Large Deviations

Let X be a topological space and B a σ-algebra on X that contain all
open sets.

A function f : X → [0,∞] is said to be a good rate function if it is
lower semicontinuous with compact level sets

{x ∈ X : f (x) ≤ t}, t ∈ [0∞].

A sequence of probability measures (µn) the large deviation principle
(LDP) with rate function I if

− inf
U

I ≤ lim inf
n→0

1

n
log [µn(U)]

for every open set U, and

− inf
C

I ≥ lim sup
n→0

1

n
log [µn(C )]

for every closed set C .
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Large Deviations

Main steps for proving that (µn) satisfies the LDP.

1 Prove that (µn) satisfy the LDP lower bound:

− inf
U

I ≤ lim inf
n→0

1

n
log [µn(U)]

for every open set U.

2 Prove that (µn) satisfy LDP upper bound:

− inf
C

I ≥ lim sup
n→0

1

n
log [µn(C )]

for every closed set C .

3 Identification of the rate function.
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Large Deviations

If X is a regular topological space, then the rate function I is unique.

The LDP is unique!

The upper bound can be hard to prove...

(µn) satisfies a weak large deviation principle with rate function I if it
satisfies the lower bound and

− inf
K

I ≥ lim sup
n→∞

1

n
log [µn(K )]

for every compact set K ⊂ X .

Easier to prove a weak LDP. Can go from weak to full LDP by
proving that the sequence (µn) is exponentially tight.
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Large Deviations of empirical means

Consider (Xi ) i.i.d. random variables with distribution µ defined on
(Ω,F ,P) and taking values in the topological linear space X .

The empirical means Sn : Ω → X , defined by

Sn(ω) =
1

n

n∑
i=1

Xi (ω).

The distributions are given by µn = P ◦ Sn
−1.
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Cramér’s Theorem

Theorem (Weak Cramér’s Theorem)

The sequence (µn) of distributions of the empirical means satisfy a weak
large deviation principle with a convex rate function I = Λ∗, and

lim
n→∞

1

n
logµn(A) = − inf

x∈A
Λ∗(x),

for every convex and open A ⊂ X .

Here Λ∗ is the Legendre-Fenchel transform of

Λ(λ) = Λµ := (λ) = logE
[
e⟨λ,X ⟩

]
= log

[∫
X
e⟨λ,d⟩ dµ(x)

]
.
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Large Deviations and CMC

If we want
P
(
|θn − θ| < ε|θ|

)
> 1− α.

Let
Rε := B (θ, ε|θ|) , Aε = Rc

ε ,

then we get
P(θn ∈ Aε) ≤ α.

For large n we can interpret this as

µn(Aε) ⪅ e−nI (Aε).
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Large Deviations and CMC

To achieve the desired precision with confidence 1− α we want

e−nI (Aε) ≤ α.

Taking logarithms of both sides we get

nI (Aε) ≥ log(α)

Rearranging yields:

n ⪆
log(α)

I (Aε)
.
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Example with X ∼ N(θ, σ2)

Let θ = E[X ] for X ∼ N(θ, σ2). Then the rate function is given by

I (x) =
(x − θ)2

2σ2
,

and

I (Aε) = inf{I (x) : |x − θ| > ε|θ|} =
ε2θ2

2σ2

Gives the LDP bound for the sample size:

n ⪆
log(α)2σ2

ε2θ2
.

Compare with introduction:

n ⪆
z21−α/2σ

2

ε2θ2
.
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Convexity and Large Deviations

Definition

Let f : X → [−∞,∞], then the Legendre-Fenchel transformof f is the
function f : X ∗ → [−∞,∞] defined by

f ∗(λ) = sup{⟨λ, x⟩ − f (x) : x ∈ X}
= − inf{f (x)− ⟨λ, x⟩ : x ∈ X}.

Theorem (Biconjugate Theorem)

Let f : X → (−∞,∞] not be identically ∞, then f = f ∗∗ if and only if f
is convex and lower semicontinuous.
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What we have not covered

Sanov’s Theorem and LDP for the distributions of the empirical
distributions.

Projective Limits.

Weak Convergence Approach.
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Questions

Feel free to ask any questions!
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