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Abstract

In this thesis we apply the large deviations principle to study the performance of Monte

Carlo estimators for rare events. We introduce weak convergence of measures and study

the topological structure of the collection of finite signed measures in the weak topology

and in the �-topology. We prove the law of large numbers for the empirical distributions

of the importance sampling estimator and Sanov’s Theorem in the �-topology for random

variables taking values in a Polish space and then more generally in a measurable space. We

also introduce a version of Sanov’s Theorem for the empirical distributions of importance

sampling estimators. This is used to study the performance of importance sampling and

crude Monte Carlo estimators.

Keywords: large deviation principle, importance sampling, rare events, weighted empirical

measures, weak convergence, �-topology.





Sammanfattning

I detta examensarbete använder vi teorin om stora avvikelser för att studera konvergensegen-

skaperna hos Monte Carlo estimatorer för sällsynta händelser. Vi introducerar svag konver-

gens av mått och studerar den topologiska strukturen hos mängden av ändliga mått besty-

ckade med topologin associerad med svag konvergens av mått och bestyckade med den så

kallade �-topologin. Vi bevisar de stora talens lag för de empiriska distributionerna till den

så kallade importance sampling estimatorn och Sanov’s Sats i �-topologin för stokastiska

variabler när värdemängden är ett polskt rum, och mer generellt ett mätbart rum. Vi intro-

ducerar också en version av Sanov’s Sats som håller för de empiriska distributionerna till

importance sampling estimatorn. Vi tillämpar sedan dessa metoder för att studera konver-

gensegenskaperna hos olika Monte Carlo estimatorer.

Nyckelord: Stora avvikelser, importance sampling, sällsynta händelser, viktade empiriska

mått, svag konvergens, �-topologin.
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1 Introduction
Stochastic models, which include random variables, play an important role in modern soci-

ety with applications in a diverse range of areas including weather forecasting, networking

systems, and physics, among others. The object of interest in these models is often the prob-

ability of some event or more generally the expected value of an unknown random variable.

The techniques used to algorithmically solve these types of problems are generally referred

to as stochastic simulation techniques, of which the most widely used class is Monte Carlo
(MC) simulation. The heuristic idea behind Monte Carlo simulation is the following: if we

are able to simulate samples from a distribution then the mean of the samples should be a

good approximation of the mean of the distribution.

Consider a real valued random variableX with distribution� defined on a probability space

.�;F ;P /, and suppose that we are interested in computing the expected value of X given

by

� D EŒX� D

Z
�

X dP : (1)

The crude Monte Carlo (CMC) method to approximate � consists of simulating a sequence

of independent identically distributed (i.i.d.) random variables X1; X2; : : : with the same

distribution, �, as X . Then the CMC estimator of � is given by

�n.!/ D
1

n

nX
iD1

Xi .!/ � EŒX�: (2)

The strong law of large numbers implies that the CMC estimator converges almost surely

to the expected value EŒX� as n goes to infinity. However, when EŒX� is small, then the

convergence rate of CMC is too slow for many applications; making it unpractical. There

are two main factors that determine the convergence rate of Monte Carlo estimators: the

variance of the estimator, and the sample size n. A standard technique to speed up Monte

Carlo simulation is to replace the Monte Carlo estimator with another estimator that has

lower variance. One such method which is widely used is importance sampling (IS).

The general idea in importance sampling is to make a change of measure and sample from

another distribution which better represents the region of interest for the simulation. Let

� be the distribution of X and assume that we can simulate samples of some real valued

random variables Yi with distribution � . If� is absolutely continuous with respect to � and

� denotes the Radon-Nikodym derivative of � with respect to � , then the corresponding

importance sampling estimator of � is given by

In.!/ D
1

n

nX
iD1

Yi .!/�.Yi .!// � EŒX�: (3)

The choice of proposal distribution � is crucial to the performance of importance sampling,

and a good choice of � can result in a much lower variance of the importance sampling

estimator compared to the CMC estimator in equation (2).

Many events of interest to practitioners have very low probabilities of occurring, and im-

portance sampling is one of the main techniques to efficiently simulate the probabilites of

such events. In the stochastic simulation literature the term rare event is used for events

with little to no probability of occurring. As an example, consider an insurance company:

the business model consists of correctly pricing the insurance premiums such that all the
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incoming insurance claims can be paid. If the collective value of all insurance claims is too

high, then the insurance company will run the risk of insolvency. The probability of in-

solvency is commonly called ruin probability and the Swedish mathematician and actuary

Harald Cramér (1893-1985) was one of the pioneers of ruin theory in insurancemathematics.

In 1938 Cramér published a paper [22] in which he proved bounds for the probabilities that

sums of independent identically distributed random variables deviate from their expected

value. The results of Cramér are considered the first in the mathematical theory of large

deviations.

The large deviations principle is used to estimate probabilites at an exponential scale and it

is therefore especially suitable for estimating rare event probabilites. It would take almost

30 years from when Cramér published his paper until the seminal paper [52] by S.R. Srini-

vasa Varadhan
1
was published, which laid much of the foundation of the modern theory of

large deviations. Consider a sequence of independent identically distributed random vari-

ables .Xn/ taking values in a Hausdorff topological space X with distributions �n on the

Borel �-algebra BX of X . The theory of large deviations is concerned with finding a lower

semicontinuous function I W X ! Œ0;1�, called a rate function, such that

lim

n!1
P .Xn 2 A/ D lim

n!1
�n.A/ � lim

n!1
e�n infx2A I.x/:

We will define and study the large deviation principle in chapter 4. More formally, a se-

quence of probability measures �n on a topological space X equipped with the Borel �-

algebra BX is said to satisfy the large deviation principle with rate I if

� inf

x2Ao
I.x/ � lim inf

n!1

1

n
log Œ�n.A/� � lim sup

n!1

1

n
log Œ�n.A/� � � inf

x2A

I.x/;

holds for every A 2 BX . The existence of the large deviation principle for the distributions

of the CMC estimators, �n, is given by Cramér’s Theorem (see e.g [25, Theorem 1.2.6]).

If the logarithmic moment generating function of X is finite for every s 2 R, then the

distributions of �n satisfy the large deviation principle with rate function I given by the

Legendre-Fenchel transform of the logarithmic moment generating function ofX . This can

be applied to estimate the sample size required to achieve the desired precision in Monte

Carlo simulations. If we want the CMC estimator, �n, to have relative precision " with

probability 1 � ˛, for some ˛ > 0, then this is equivalent to

P
�
j�n � � j � "j� j

�
� ˛:

Hence, for large enough n, the required sample size is approximately

n �
log.˛/

inf

˚
I.x/ W jx � � j � "j� j

	 :
Another interpretation of Monte Carlo estimators can be done through their empirical dis-

tributions, which are random variables defined on� and taking values inM1.X /, the space
of probability measures on X . Given a random variableX W �! X , we can define the map

ıX W �! M1.X /, given by ! 7! ıX.!/, where

ıX.!/.A/ D

(
1; X.!/ 2 A;

0; X.!/ … A;

1
S.R. Srinivasa Varadhan was awarded the Abel prize in 2007, partly for his contributions to the theory of large

deviations.
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is the Dirac measure at X.!/. When M1.X / is equipped with a suitable �-algebra the map

ıX is measurable and hence a random variable which takes values in the space of probability

measures on X . The empirical distribution of the CMC estimator is defined as

Ln.!/ WD
1

n

nX
iD1

ıXi .!/:

By integrating over X with respect to the measure Ln.!/ one gets the Monte Carlo estima-

tor �n.!/. From a theoretical perspective it is interesting to study the convergence of the

empirical distributions Ln in the space M1.X /. Convergence is a topological concept, and
there are many different topologies that M1.X / can be equipped with. An especially im-

portant topology on M1.X / in probability theory is the topology of weak convergence. This
topology is the weak topology onM1.X / that is generated by the class of linear functionals
on the form

hf; �i WD

Z
X
f d� ; f 2 Cb.X /:

Wewill study the topology of weak convergence ofmeasures in detail in Chapter 3wherewe

also introduce another weak topology onM1.X / known as the �-topology. The �-topology

is stronger than the topology of weak convergence and many large deviations results hold

with respect to this topology.

It was shown by Varadarajan in [50] that the empirical distributions Ln converge weakly to
the distribution ofX . Since the empirical distributions are random variables with domain�

and taking values in the space of probability measures on X , one may ask whether the dis-

tributions of Ln satisfy a large deviation principle. Sanov’s Theorem (see e.g. [25, Theorem

3.2.17]) states that the distributions of Ln, which are probability measures in M1.M1.X //,
satisfy the large deviation principle with rate function I.�/ D R.�j�/, whereR.�j�/ denotes
the relative entropy

2
.

In this thesis we study the space of finite signed measures and the space of probability mea-

sures equipped with the topology of weak convergence and the �-topology. We study the

large deviations of empirical distributions in these topologies and showhow large deviations

results can be applied to analyze the performance of IS estimators for random variables tak-

ing values in a Polish space. This leads to a recent result by Hult and Nyquist [33, Theorem

3.1] which proves that the empirical distributions of the importance sampling estimators

satisfy a Laplace principle in a subspace ofM1.X / in the �-topology. In [33] Hult & Nyquist

use the weak convergence approach (see e.g. [30]) to prove their results. We take another

approach to derive Sanov’s Theorem based on projective systems and discuss how the full

large deviation principle for the IS estimators can be derived using this framework.

1.1 Contributions of this Thesis
The main interest of this thesis is the study of large deviation principles and its applications

to empirical distributions of Monte Carlo estimators. Let X be a random variable, with

distribution �, taking values in a Polish space X , and let .Yi / be a sequence of i.i.d. random

variables taking values inX , with distribution� . We assume that� is absolutely continuous

with respect to � , and denote this by �� � . The empirical distributions of the importance

2
Also known as Kullback-Leibler divergence and we introduce it in Chapter 3.
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sampling estimator is given by

In.!/ WD
nX
iD1

�
�
Yi .!/

�
ıYi .!/:

In contrast to the empirical distributions of the CMC estimator the map In takes values in

the space of nonnegative finite measuresMC.X /. There are two main contributions of this

thesis:

1. In Chapter 3 we study the topological and linear structure of the space of finite signed

measures equipped with different topologies, concentrating on the topology of weak

convergence and the �-topology. We collect several important results related to mea-

surability and continuity in the �-topology and the weak convergence topology pre-

viously scattered across the research literature. We also give a proof that In converges
to � weakly whenever X is a separable metrizable space. The following theorem is

proved:

Theorem 3.17. Let X be a separable metrizable space and .Yi / a sequence of i.i.d. ran-
dom variables taking values in X with distribution � . If X is another random variable
on X with distribution � � � , then the empirical distributions of the IS estimator, In,
converge weakly to � almost surely, i.e.

P .f! 2 � W In.!/ H) �g/ D 1:

Here we use H) to denote weak convergence of measure. This is a known extension

of the results by Varadarajan in [50], but a proof is hard to come by.

2. In Chapter 4 we introduce the theory of large deviations necessary to understand and

analyze the required sample sizes of the CMC and IS estimator and show how the

projective systems approach of de Acosta [3] can be used to prove Sanov’s Theorem

in the �-topology. This theory is applied to Monte Carlo estimators in Chapter 4.6.

1.2 Outline
We assume that the reader has background knowledge in measure theory, functional anal-

ysis, and point set topology comparable to introductory courses at advanced level. For the

sake of completeness we have included some well known results from probability theory,

measure theory and functional analysis in the appendix.

The outline of this thesis is as follows:

Chapter 2 review the main definition and results of measure theoretic probability and

introduce importance sampling. A reader with a solid background in probability and

Monte Carlo methods can skip the first two sections, however we put a large empha-

sis on absolute continuity of measures and the Radon-Nikodym Theorem which is

not standard in the Monte Carlo textbooks. The same goes for our presentation of

importance sampling where we work with measures rather than probability density

functions. This may seem like an unnecessary abstraction but is the correct frame-

work for proving weak convergence and large deviations results in later chapters.

Chapter 3 is devoted to the study of topologies on the space, M.X /, of positive fi-

nite measures and the space of probability measures M1.X /. The concept of weak

4



convergence of measures is introduced as convergence in the weak topology induced

by integration with respect to Cb.X /, and the main results from the theory of weak

convergence of measures on separable metric spaces are proved. Two more topolo-

gies on are introduced: the �-topology, and the topology corresponding to the total

variation norm. Relative entropy (also known as Kullback-Leibler divergence) is also

introduced and the chapter is finished with a section discussing continuity and mea-

surability with respect to the different topologies introduced.

Chapter 4 presents the theory of large deviations. We state and prove two classical

results in the theory: Cramér’s, and Sanov’s Theorems. We then proceed by intro-

ducing a recent result of Hult and Nyquist [33] which extend Sanov’s Theorem to

empirical measures for importance sampling estimators. We end this chapter with

a section that goes more into depth of the applications of large deviations to Monte

Carlo estimators.

5
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2 Background
In this chapter, we present some background material from probability theory and Monte

Carlo methods necessary to follow the developments in this thesis. In section 1, we review

some measure theoretic probability and the Radon-Nikodym Theorem. In section 2, we give

an introduction to the crude Monte Carlo estimator and its convergence rate, and in section

3, we introduce importance sampling and show how it can be used to reduce the variance

of the Monte Carlo estimator and hence speed up Monte Carlo simulations.

In Appendix A.2 we have included some more results from measure theoretic probability

which will be used in later chapters. There are many textbooks on probability theory which

cover the material presented in the next section, among them [10], [28], and [34]. The

Radon-Nikodym Theorem is also covered in most Real Analysis textbooks, see for instance

[43], [31], and [32].

2.1 Probability and Notation
The formal setting of our study in this text is a probability space .�;F ;P /, and random

variables (i.e. measurable transformations) with domain � taking values in a Polish space

X equipped with the Borel �-algebra BX . A Polish space is a separable topological space

which is metrizable with a complete metric. Polish spaces have enough topological structure

to make them useful when working with certain limits of measures. We will discuss this

more in section 3.3. The collection of all probability measures on BX will be denoted by

M1.X /. We use the capital letters X; Y to denote X valued random variables with domain

�. The distribution of a random variable X W � ! X is a probability measure on BX
defined by

�.E/ WD P ıX�1.E/; for everyE 2 BX :

For a real valued random variable,X , with domain�, we use E to denote the expected value
of X , which is defined as the integral

EŒX� WD

Z
�

X dP :

The variance of X is defined as

V ŒX� WD E
��
X � EŒX�

�2�
D E

�
X2
�
� EŒX�2:

The Radon-Nikodym Theorem
Even ifX is different from R we can construct an integrable real valued random variable by

taking a Borel measurable and integrable function g W X ! R and composing it withX . The

function g.X/ is a real valued random variable with domain .�;F /, and a standardmeasure

theoretic argument using the monotone convergence theorem and simple approximation

shows that

EŒg.X/� D

Z
�

g.X/ dP D

Z
X
g d� : (4)

The right hand side of equation (4) can also be interpreted as the expected value of the

random variable g on the probability space .X ;BX ; �/. Whenever we take expected values

with respect to somemeasure other thanP , wewill clarify this by sub-scripting the expected

7



value operator E. This notation is standard in the probabilistic community and using this

the right hand side of equation (4) can be expressed asZ
X
g d� D E�Œg�:

These types of change of measure will play an important role in the forthcoming develop-

ments. We will now review absolute continuity of measures and the Radon-Nikodym Theo-

rem. This result and its implications are central to understanding both importance sampling

and relative entropy which play an important role in the theory of Large Deviations.

Definition 2.1. A measure � is said to be absolutely continuous with respect to a measure

� on a �-algebra B if �.A/ D 0 whenever A 2 B and �.A/ D 0.

We write �� � to denote that � is absolutely continuous with respect to � .

Theorem 2.1 (Radon-NikodymTheorem). Let� and� be � -finite measures on ameasurable
space .X ;B/, and �� � . Then there exists a �-integrable function �, such that

�.A/ D

Z
A

� d� ; for everyA 2 B:

The function � is unique�-a.e. and is called the Radon-Nikodym derivative of�with respect

to � , this is written as
d�
d�

. The usefulness of the Radon-Nikodym Theorem becomes more

apparent in the following two corollaries.

Corollary 2.1 (Radon-Nikodym change of measure). Let � and � be � -finite measures on a
measurable space .X ;B/, and �� � . If g 2 L1.X ; �/, thenZ

X
g d� D

Z
X
g
d�

d�
d� :

Using the Radon-Nikodym Theorem we define the probability density function, fX of a ran-

dom variable X with distribution � with respect to measure dx as the Radon-Nikodym

derivative

f D
d�

dx
:

The continuous distributions known from introductory probability theory courses corre-

spond to real valued random variables with distributions which are absolutely continuous

with respect to Lebesguemeasure. Similarly the discrete distributions correspond to random

variables which takes values inN and with distributions absolutely continuous with respect

to counting measure. Using Corollary 2.1 we get the classical formula for the expected value

of a continuous random variable

EŒX� D

Z
R
x d� D

Z
R
xf .x/ dx :

The next corollary states two very useful properties of the Radon-Nikodym derivatives.

Corollary 2.2 (Radon-Nikodym derivative properties). Let �; �; and �; be � -finite measures
on a measurable space .X ;B/.
If � � �� � , then the following chain rule holds for the Radon-Nikodym derivative

d�

d�
D

d�

d�

d�

d�
:

8



Furthermore, if it also holds that � � �, then

d�

d�

d�

d�
D 1 a.e.

By rearranging the second part of Corollary 2.2 we get the relation between the two different

Radon-Nikodym derivatives

d�

d�
D

1
d�
d�

a.e. (5)

We will revisit this identity when discussing optimal choices of measures in importance

sampling.

2.2 Monte Carlo
In this section we give an in introduction to Monte Carlo simulation. The material is well

known and there are several classical reference- and textbooks which treat the same ma-

terial (see e.g. [39], [6], [42], and [44]). Our exposition is inspired by and follows that

of Asmussen and Glynn in [6] the most closely. However, we differ from most of the texts

mentioned above in our strong focus on working with probability measures instead of prob-

ability distribution functions. This abstract approach to the subject will be necessary when

working with large deviations theory.

We assume that .�;F ;P / is a probability space and thatX is random variable taking values

in the measurable space

�
X ;BX

�
. If g W X ! R is a Borel measurable and integrable

function, then g.X/ is a real valued random variable with domain .�;F /. Given such a

function we are interested in computing expected values of the type

�.g/ WD EŒg.X/�: (6)

One of the most simple estimators to form for � is given by

�n.g/ WD
1

n

nX
iD1

g.Xi /: (7)

The method to approximate � by �n is often referred to as vanilla Monte Carlo or crude
Monte Carlo (CMC) and we use the two terms interchangeably. We shall refer �n as the

CMC estimator of g.X/. The key motivation for the Monte Carlo estimate is the strong law

of large numbers, which asserts that �n ! � almost surely as n!1. However the strong

law of large numbers does not provide us with any insight about the rate of convergence of

the CMC estimator �n. The Monte Carlo convergence rate can be explored by means of the

central limit theorem and confidence intervals. If the random variables g.Xi / are square

integrable with finite variance �2 D V Œg.X/� then it follows from the central limit theorem

that
p
n
�
�n � �

�
H) N

�
0; �2

�
; as n!1: (8)

Here we use H) to denote convergence in distribution. Thus it follows from (8) that the

estimation error �n � � converges to a normal distribution with variance �2=n. Hence, for

large n the estimator �n is approximatelyN .�; �2=n/-distributed, and consequently we can
create a 1 � ˛ two-sided confidence interval for the CMC estimator by

I˛.�n/ �

�
�n �

�
p
n
z1�˛=2 ; �n C

�
p
n
z1�˛=2

�
; (9)

9



This means that for large enough n

P .� 2 I˛.�n// ' 1 � ˛:

We use the symbol ' to mean that the inequality holds approximately for large n (where

n depends on the context). From equation (9) we can deduce that given a fixed confidence

level ˛ the absolute error of the Monte Carlo estimate is proportional to to the half width

of the confidence interval,

HW˛ WD
�
p
n
z1�˛=2: (10)

Equation (10) captures an important fact about the Monte Carlo method: the error con-

vergence rate is O.1=
p
n/. This is often called the canonical Monte Carlo convergence rate.

Rigorous analysis of the convergence of the CMC estimator can be done using asymptotic

confidence intervals. In practice the variance �2 is generally unknown and must also be

estimated, for more on these topics a good starting point is [6, §III.2].

Performance Of MC Estimators
Generally speaking we want the confidence interval in equation (9) to be as narrow as possi-

ble, however a good value for the half widthHW˛ will likely depend on the magnitude of � .

Two of the most simple measures for the error of the Monte Carlo estimators are the

1. absolute precision "a D j�n � � j

2. relative precision "r D
j�n�� j
j� j

In the statistical literature the terms precision and accuracy are often used for the above

entities whilst other areas of applied mathematics usually refer to them as absolute and

relative approximation errors. To get the absolute precision less than " with confidence at

least 1 � ˛ is in mathematical terms equivalent to

P
�
j�n � � j < "

�
� 1 � ˛:

The necessary sample size n to achieve this precision can be derived from the confidence

interval for the CMC estimator given in equation (9), which yields the formula

n '
z2
1�˛=2

�2

"2a
: (11)

We can use the above formula together with the fact that "a D j� j"r to get the expression

for the required sample size

n '
z2
1�˛=2

�2

"2r�
2

: (12)

This shows that in order to achieve the same relative precision as absolute precision given by

n requires a sample size which is scaled by a factor of j� j�2. It is clear that this number can

grow very large for small � . Furthermore, the relative precision is the preferred method of

the two for evaluating the effectiveness of an estimator when � � 1, which is the case when

working with rare events. In practice there is one complication with using the formulas in

equation (11) and (12); the variance �2 is generally unknown. Furthermore the formula in

equation (12) involves the expected value � , which we are trying to approximate. There

are workarounds to this problem and one common solution is to use the sample mean and

10



variance in combination with sequential algorithms that update the samples every iteration

(see e.g. [42]).

Another common measure for the performance of an estimator which is commonly used in

statistics is the Mean Square Error (MSE). The MSE of the estimator
O� of g.X/ is defined

as

MSE. O�/ WD E
��
g.X/ � O�

�2�
:

Whenever the estimator
O� is unbiased, i.e.

E
�
O�
�
D E

�
g.X/

�
;

then the expression for themean square error simply reduces to the variance of the estimator

O� . This is the case for the CMCestimator �n andwill also be true for the importance sampling

estimator introduced in the next section. Hence the terms variance and MSE will be used

interchangeably for this entity.

Rare Events
The term rare event is used in the stochastic simulation literature denote events A 2 F that

satisfy P .A/ � 1. This is usually used to mean probabilities below an order of 10�3 or

10�4 in magnitude (see e.g. [6] or [37]). Oftentimes, the probability p, of a rare event, is

unknown and what the practitioner is seeking to estimate. In that case the CMC estimate

for the random variable 1A can be used to find the probability

p WD P .A/ D

Z
A

dP D

Z
�

1A dP :

The CMC estimator is in this context be given by

�n D
1

n

nX
iD1

Xi ; Xi � Be.p/;

where Be.p/ denotes the Bernoulli distribution with parameter p. The variance is given by

the expression

V Œ1A� D p.1 � p/:

For rare events the variance and expectation are almost the same, this is clear if we consider

the quotient

V Œ1A�

EŒ1A�
D 1 � p:

If we consider the factor which depends on p required for a given relative precision given

in equation (12), we see that it can be approximated by

�2

�2
D

V Œ1A�

p2
D
1 � p

p
�
1

p
; p � 1:

Thus, for rare events the number of simulations required to get the the relative precision

"r < 1 with CMC is greater than p�1. When small probabilities are of interest this can lead

to huge simulation costs. In [6] they mention that probabilities in telecommunications can

be about 10�9 in magnitude. If one would like to simulate a probability of that size with a

relative precision of 0:1 and confidence level 0:05 it would require more than 1011 samples.

This goes to show that the CMCmethod is very inefficient for rare events and in many cases

it may not even be possible to get an answer from the CMC method in a reasonable amount

of time. We present an example of this below by computing the probability of a tail event

for a normal distributed random variable.

11



Example 1 (Probability of tail event for normal distributed r.v.). Consider a standard normal

random variable Z � N.0; 1/ and the event A D fZ � ag. For large a > 0 the event A can

be considered a rare event and the probability is given by

pa WD P .A/ D EŒ1fZ�ag� D

Z 1
a

f .x/ dx ; (13)

where f .x/ is the p.d.f. for a standard normally distributed random variable given by

f .x/ D
1
p
2�
e
�x2

2 :

The integral in equation (13) cannot be solved analytically and it is usually expressed as

pa D 1 �ˆ.a/;

where ˆ denotes the cumulative distribution function of a N.0; 1/ random variable, which

can be approximated numerically. Similarly, we get the expression for the variance of Z,

which is given by

V ŒZ� D pa.1 � pa/ D
�
1 �ˆ.a/

�
ˆ.a/:

If we let a D 4, then the probability pa � 3:17 � 10�5. A natural question to ask is how

many samples we need to get a relative precision "r with a certain confidence level ˛. If

˛ D 0:01 then z1�˛=2 D 2:58 and if we want a relative precision "r D 0:1 equation (12)

leads to a sample size

n � 2:1 � 107:

Figure 1 below show the values of HW˛ for the CMC estimator of the rare event A for

varying sample sizes, and Figure 2 shows the relevant parts whereHW˛ is close to "rpa.

It is clear from the example above that the simulation costs can become very large, even when
simulating the probabilities of rare events under very simple distributions. However, increasing
the sample size is not the only option to increase the precision of the simulation. The half width
HW˛ can also be reduced by reducing the variance �2. This is the idea behind importance
sampling, which is introduced in the next section. For more on rare event simulation two good
starting points are Chapter VI of [6] and Chapter 10 of [37], which provide additional references.
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Figure 1: Half width HW˛ for the CMC estimator of the rare event A for varying sample

sizes.
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Figure 2: Half widthHW˛ for the CMC estimator displayed for the rare event A for sample

sizes whereHW˛ is close to p � 10�1.

2.3 Importance Sampling
The convergence rate of vanilla Monte Carlo is O.1=

p
n/ which in many cases in unfeasi-

ble from a computational stand point, especially when it comes to rare event simulations.

There are two main strategies to increase the precision and reduce the MSE of Monte Carlo

estimates. Firstly, it is always possible to increase the sample size n, secondly we may use

another estimator with lower variance. The general technique of replacing a Monte Carlo

13



estimatorwith another estimator that has lower variance is well established, and thesemeth-

ods are commonly referred to as variance reduction techniques. Importance sampling solves

the convergence rate problem by the latter approach, thus it belongs to the class of variance

reduction techniques. The idea is to make a change of measure and sample from another

distribution which results in a lower variance of the estimator. Let �; � 2 M1.X / satisfy
�� � , and � denote the Radon-Nikodym derivative of � with respect to � , i.e.

� D
d�

d�
:

Suppose we are interested in computing � as in equation (6) and have a random variable

Y taking values in X with domain .�;F ;P /, and the distribution, �, of X , is absolutely

continuous with respect to to the distribution, � , of Y . Then it follows from the Radon-

Nikodym Theorem (Corollary 2.1) that

� D EŒg.X/� D

Z
X
g d� D

Z
X
g� d� D EŒg.Y /�.Y /�: (14)

This identity is called the the importance sampling fundamental identity [42] and we refer

to the measure � as the target distribution and � as the proposal distribution3. Even though

equation (14) shows an equality in expectation between the right and left hand side it is still

possible that the variance of g.Y /�.Y / is lower than the variance of g.X/. That is clear by

the following lemma.

Lemma 2.1. Assume that g.X/ has finite variance, then the variance of g.Y /�.Y / is given
by

V .g.Y /�.Y // D

Z
X
g2� d� � �2:

Proof. The proof is a straight forward application of the Radon-Nikodym Theorem. Let

g.X/ have finite variance, then a change of measure yields

V Œg.Y /�.Y /� D E� Œg
2�2� � E� Œg��

2
D

Z
X
g2� d� � �2:

�

The implications of Lemma 2.1 are very important. It follows that the variance of g.Y /�.Y /

may be different from the variance of g.X/, which is given by

V Œg.X/� D E�
�
g2
�
� E�Œg�

2
D

Z
X
g2 d� � �2;

We express this in the corollary below.

Corollary 2.3. The difference in variance between g.X/ and g.Y /�.Y / is given by

V Œg.X/� � V Œg.Y /�.Y /� D

Z
X
g2 .1 � �/ d� :

Hence, by using a change of measure, it is possible to preserve the expectation of inter-

est whilst reducing the variance. By Corollary 2.3, the variance is reduced whenever the

inequality Z
X
g2.1 � �/ d� > 0 (15)

3
The proposal distribution � goes under many names in the literature and it is also commonly called the

sampling distribution or importance distribution.
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is satisfied. Furthermore, equation (15) gives some insight into what properties a good sam-

pling distribution should have in terms of the Radon-Nikodym derivative � D d�
d�

. Prefer-

ably � should be small around the areas where g2 is the largest. In terms of measures this

means that � should be concentrated on the areas where g2 is large. It is not very hard to

show which distribution � that is optimal when it comes to reducing the variance, and it is

shown in the following theorem.

Theorem 2.2. Let Z W � ! X be a random variable with distribution � 2 M1.X / that
satisfies �� � . If

d�

d�
D

E�.jgj/

jgj
; (16)

then � is the optimal measure in the sense that it yields the lowest variance of all IS-measures.
I.e. if Y W �! X is a random variable with distribution � 2 M1.X / and �� � , then

V

�
g.Z/

d�

d�
.Z/

�
� V

�
g.Y /

d�

d�
.Y /

�
:

Proof. Let �; � and � satisfy the assumptions of Theorem 2.2. By Lemma 2.1 it follows

that

V

�
g.Z/

d�

d�
.Z/

�
� V

�
g.Y /

d�

d�
.Y /

�
D

Z
X
g2
�
d�

d�

�2
d� �

Z
X
g2
�
d�

d�

�2
d�

Thus, we need to show thatZ
X
g2
�
d�

d�

�2
d� �

Z
X
g2
�
d�

d�

�2
d� :

Using the expression for the Radon-Nikodym derivative
d�
d�

we get thatZ
X
g2
�
d�

d�

�2
d� D

Z
X
g2
�

E�.jgj/

jgj

�2
d� D E�.jgj/

2
(17)

By a change ofmeasure and then applying the Cauchy-Schwarz inequalitywe get that

E�.jgj/
2
D

�Z
X
jgj

d�

d�
d�

�2
�

Z
X
g2
�
d�

d�

�2
d� (18)

Thus, by combining equation (17) and (18) the inequality follows.

�

This change of measure technique is the main idea behind the importance sampling estimate

of � . Instead of using the target distribution� importance samplingworks by sampling from

the proposal distribution � . The only difference between the crude Monte Carlo estimator

and the importance sampling estimator is a change of measure which makes it possible to

simulate random variables with law � instead of �.

Definition 2.2. LetY1; Y2; : : : be a sequence of i.i.d. randomvariableswith domain .�;F ;P /
taking values in BX . Assume that the law � , of Yi , is absolutely continuous w.r.t. the law

of X , �. Then the importance sampling (IS) estimator of � is defined as

In.g/ WD
1

n

nX
iD1

g.Yi /�.Yi /; � D
d�

d�
: (19)
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Lemma 2.2. The variance of the IS estimator In is given by

V .In/ D
1

n

�Z
X
g2� d� � �2

�
D
1

n

�Z
X
g2�2 d� � �2

�
:

Proof. The random variables g.Yi /�.Yi / are i.i.d. real valued random variables. It follows

from independence that

V ŒIn� D
1

n2

nX
iD1

V Œg.Yi /�.Yi /� D
1

n
V Œg.Yi /�.Yi /�:

Thus, Lemma 2.1 implies that

V ŒIn� D
1

n

�Z
X
g2�2 d� � �2

�
D
1

n

�Z
X
g2� d� � �2

�
:

�

The expression for the variance of the IS estimator given by Lemma 2.2 is simply the expres-

sion of the variance for g.Y /�.Y / scaled by 1=n. Hence, the optimal proposal distribution

is given by the measure satisfying equation (16) from Theorem 2.2. However, in practice

equation (16) is not very helpful for choosing the proposal distribution � since it involves

� D E�Œg� which is the unknown value we are trying to compute.

2.4 Autonormalised Importance Sampling
It is possible to extend the IS-algorithm for cases when the Radon-Nikodym derivative, �,

is known only up to a multiplicative constant. We say that a function w W X ! R is an

un-normalised Radon-Nikodym derivative of � with respect to � if it satisfies

w.x/ D ˛�.x/ (20)

for some positive constant ˛. Note, since � is a probability measure we get that

�.X / D
Z
X
� d� D

1

˛

Z
X
w d� D 1:

The normalising constant ˛ can be found by integration, which yields ˛ D
R
X wd� . Hence,

we can express � as Z
X
g d� D

R
X gw d�R
X w d�

:

This is the fundamental identity of the autonormalised IS estimator Jn which is defined

as

Jn.g/ WD

Pn
iD1 g.Yi /w.Yi /Pn

iD1w.Yi /
(21)

It is important to note that the autonormalised IS estimator is biased. This, may not be

apparent from equation (21) at first glance, however, the autonormalised IS estimator is

a quotient of random variables and hence it is not possible to simply use linearity of ex-

pectation to guarantee that the expected value is preserved for the estimator. This can be

compared with the regular IS estimator which is unbiased. The autonormalised IS estima-

tor plays an important role in many advanced Monte Carlo schemes due to the fact that

it is sufficient to know the distributions only up to a normalising constant. These type of

situations naturally occur in Bayesian filtering problems which are commonly solved with

Sequential Monte Carlo methods, also known as particle filters. For more on these topics

the reader is referred to the books [20], [27], and [47].
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2.5 Importance Functions
When using importance sampling, the assumption that � � � on all of X may seem un-

necessarily restrictive. If we are interested in computing EŒg.X/�, then it should suffice that

�� � on the region fg ¤ 0g, since

EŒg.X/� D

Z
X
g d� D

Z
g¤0

g d� :

We can extend this idea even further by defining an importance function f W X ! Œ0;1/

which is specifically designed to capture the importance of different regions of X . The idea

is that we want the measure � to be a good approximation on � in the regions of greatest

interest. When computing EŒg.X/� a suitable importance function could be the indicator

function 1fg¤0g.

Using the idea of an importance function we can restrict the criteria that �� � to a subset

ofX rather than on all ofX . If F � X , then the restriction of the �-algebra B to F is given

by

BF D fA \ F W A 2 Bg;

and is a ��algebra of subsets of F . Let �F and �F denote the restrictions of � and � to

BF . If it holds that �F � �F on BF , then it follows from the Radon-Nikodym Theorem

that the Radon-Nikodym derivative

�F D
d�F

d�F

exists, and that Z
F

h d�F D

Z
F

h�F d�F

whenever h is a �F -integrable function. Hence, since 1F is integrable, it follows that if

�� � on all of X then �F is simply the restriction of the Radon-Nikodym derivative � to

F . Given an importance function, f , we define �f W X ! Œ0;1/ by

�f WD

(
d�ff¤0g
d�ff¤0g

; f ¤ 0

0; f D 0;

and let �f denote the measure on .X ;BX / given by

�f .A/ WD

Z
A

f d�:

Then it follows that Z
X
gf d� D

Z
X
g d�f D

Z
X
g�f d� ; (22)

for every integrable g that satisfies supp.g/ � supp.f /. If f D 1fg¤0g, then equation (22)

reduces to the importance case Z
X
g d�f D

Z
X
g�g d� :

The main idea behind the importance function is that we do not need the proposal distribu-

tion to satisfy �� � on all of X , but only the important regions. Hence, we may consider

a larger class of admissible proposal distributions. We will not take this idea further, but it

is good to have this in mind when designing an IS estimator.
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3 Topology of Measures and Relative
Entropy

In this chapter we study topologies on the spaceM.X / of finite signedmeasures on

�
X ;BX

�
and some of its subspaces. The two subspaces of most interest to us are the space nonneg-

ative measures, MC.X /, and the space of probability measures M1.X /. We introduce three

topologies: the total variation norm, the ��topology, and the topology of weak conver-

gence. The term weak convergence of measures is very natural from a functional analytic

perspective, as we will see the corresponding topology is the weak topology onM.X / gen-
erated by the space of bounded continuous functions onX . The general idea will be that the

space of bounded measurable functions andM.X / can be paired by the dual relation

hf; �i D

Z
X
f d� ;

and M.X / is a subset of the dual to the space of bounded measurable functions. When

the functions f are taken to be bounded measurable functions, then the strong topology

induced by this dual pairing is the total variation norm and the weak* topology is the �-

topology. In the final two sections of this chapter we study the measurability and continuity

properties with respect to the �-topology and topology of weak convergence on M.X /.
We also introduce the relative entropy which can be thought of as a distance between to

probability measures and play an important role as a rate function in the large deviations

theory presented in chapter 4.

3.1 Spaces of measures
In this section we study the topological and linear structure of different spaces of measures.

We start with the basic definitions and by introducing some notation. Let X be a set, then

we use B to denote a �-algebra of subsets of X and A to denote an algebra of subsets of X .

If X is a topological space, then we will use BX to denote the Borel �-algebra of subsets of

X and similarly AX to denote the Borel algebra of subsets of X , i.e. the smallest ��algebra

and algebra of subsets of X containing all open sets.

Definition 3.1. Let A be an algebra of subsets of X , then a function � W A! Œ�1;1� is

said to be a finitely additive signed measure4 if

1. �.;/ D 0.

2. � is finitely additive

3. � takes at most one of the values �1=1.

Finite additivity means that whenever fAig is a finite disjoint collection of elements of A,

then

�

 
n[
iD1

Ai

!
D

nX
iD1

�.Ai /:

It is clear that countable additivity implies finite additivity, hence every signed measure is a

finitely additive signed measure. A nonnegative finitely additive signed measure will simply

4
Some authors refer to finitely additive measures as charges, see e.g. Aliprantis and Border [5].
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be called a finitely additive measure. The total variation of a finitely additive signed measure

is the finitely additive measure j�j defined by

j�j.A/ WD sup

nX
j�.Ai /j W fAig is a finite disjoint partition of A of elements of A

o
:

If j�.X/j < 1 we say that � is of bounded variation or simply finite. The Hahn-Jordan

Decomposition Theorem (see e.g. [29, §III.1.8]) states that any finitely additive finite signed

measure� can be decomposed into a positive and negative part�C and�� that satisfy

�.A/ D �C.A/ � ��.A/; j�j.A/ D �C.A/C ��.A/;

for every A 2 A. Explicitly, the expression for the positive and negative part of the Jordan

decomposition is given by

�C.A/ WD sup

U�A

�.U /; ��.A/ WD inf

A�F
�.F /;

where the supremum and infimum are taken over sets U;F 2 A. Given a measurable

space .X ;B/ we use the notation M.X / for the collection of finite signed measures on

X . Similarly, if A is an algebra of subsets of X we write Mba.X / for the collection of all

finite finitely additive signed measures on .X ;A/. Since every measure is finitely additive,

it follows that if A D B, then we get the following inclusion

M1.X / � M.X / � Mba.X /:

Regular Measures

An important class of measures on topological space are the regular
5
measures.

Definition 3.2. A finitely additive measure, �, defined on a topological space is said to be

regular if for every A 2 A, � satisfy

�.A/ D supf�.C/ W C � A; C closedg

D inff�.U / W A � U; U openg:

WewriteMr .X / to denote the collection of Borel regularmeasures on

�
X ;BX

�
andMrba.X /

for the collection of finitely additive signed regularmeasures on

�
X ;AX

�
. Note thatMrba.X /

is defined on the Borel algebra and not the Borel � -algebra, thusMrba.X / š M.X /. The rela-
tions between these spaces is non-trivial, however in some cases every element ofMrba.X /
can be uniquely extended to an element of Mr .X / (see e.g. [5, section 14.4] note that their

notation is different from ours).

One of the main properties of regular measures, which follows directly from the definition,

is that they are completely determined by their values on open (respectively closed) sets.

and this is the distinguishing feature which make them very useful when working with

convergence. Another equivalent characterization of regular measures which also follows

directly from the definition is given below.

5
There are several definitions of a regular measure existing in the measure theoretic literature and we define a

Borel regular measure the same way as Partasarathy [41], Bogachvev [13], and Dunford & Schwartz [29]. Another

definition, sometimes found in real analysis and geometric measure theory texts, defines a regular measure to be

what we call a regular and tight measure. See for instance Royden [43] and Mattila [40].

20



Lemma 3.1. LetX be a topological spaceX and� be a Borel measure onX . Then� is regular
if and only if for every A 2 BX and " > 0 there exists an open set U" and a closed set C" such
that C" � A � U" and

�
�
U" n C"

�
< ":

A useful consequence Lemma 3.1 is that whenever a measure is regular on a topological

space and A 2 A there exists an increasing sequence of closed subsets .Cn/ of A such

that

lim

n!1
�.Cn/ D �.A/;

and a decreasing sequence of open sets Un all containing A such that

lim

n!1
�.Un/ D �.A/:

It is useful to know that in general topological spaces a Borel measure may not be regular

but on metric spaces every Borel measure is regular and we will study measures on metric

spaces more in detail towards the end of next section.

Representation Theorems
The collection of signed measures has a natural linear structure. The addition of two mea-

sures �; �, and scalar multiplication with ˛ 2 R are given by

.�C �/.A/ WD �.A/C �.A/; .˛�/.A/ WD ˛�.A/;

It is clear that Mba.X / and Mrba.X / are linear spaces under these operations and that

M.X / is a linear subspace of Mba.X /. The collection M1.X / on the other hand is not a

linear subspace since the sum of two probability measure is not a probability measure. The

total variation induces a norm on these linear spaces called the total variation norm, given

by

k�kTV WD j�j.X / D �C.X /C ��.X /:
Under this norm the spaces Mba.X /;Mrba.X /, and M.X / are Banach spaces

6
(see e.g [29,

pp. 240, IV.2.15–16]). We are now going to state some well known representation theorems

for Mba.X / and Mrba.X /. The advantage of having these representations is that we are

able to use functional analytic methods to place much weaker (weak*) topologies on these

spaces.

Let B.X / denote the space of real valued functions with domain X which are bounded and

Borel measurable. The space B.X / equipped with the uniform norm

kf k1 D sup

x2X
jf .x/j;

is a Banach space and the strong dual spaceB�.X / can be represented byMba.X / equipped
with the total variation norm.

Theorem 3.1 (see e.g. [29, §IV.5.1]). Let A be an algebra of subsets of X , then the space
Mba.X ;A/ with the total variation norm is linearly isometric to B�.X / in the strong dual
topology, by the map

� 7!

Z
X
f d� ; for every f 2 B.X /:

6
In fact they are all Banach lattices, specifically AL-spaces (see e.g. [5, pp. 10.10–11 & 12.2]).
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Remark. This holds for any algebra of subsets of X , thus it also holds for any �-algebra of

subsets of X . An important case is when B is a �-algebra andM.X ;B/ � Mba.X ;B/.
Using the fact thatMba.X / is isomorphic to the strong dual of B.X /, we get an equivalent

norm to the total variation norm induced by the strong operator topology, given by

k�k D sup

f 2B.X /
kf k1�1

jhf; �ij

Definition 3.3. Let X be a topological space, then we define Cb.X / to be the space of

bounded continuous real valued function on X , equipped with the uniform norm

kf k1 D sup

x2X
jf .x/j:

The space Cb.X / is a Banach Space (see e.g. [29, §IV.6]) , and when X is normal the dual

space of Cb.X / is isomorphic to Mrba.X ;AX /. But, before we state the exact result we

give the following useful result which we will use later.

Theorem 3.2 (see e.g. [5, Thm 14.8]). Let X be a normal topological space and ƒ a positive
linear functional on Cb.X /, then there exists a unique element � 2 Mrba.X ;AX / that satisfy
�.X / D ƒ.1/ and Z

X
f d� D ƒ.�/; for every f 2 Cb.X /:

Theorem 3.3 (see e.g. [29, §IV.6.2]). Let X be a normal topological space, then the space
Mrba.X ;AX / with the total variation norm is linearly isometric to Cb.X / in the strong dual
topology, by the map

� 7!

Z
X
f d� ; for every f 2 Cb.X /:

In the special casewhenX is a compact Hausdorff space the dual is isomorphic to the regular

Borel measures defined on the Borel �-algebra. The following result is generally known as

Riesz Representation Theorem (see e.g [29, §IV.6.3]).

Theorem 3.4 (Riesz Representation Theorem). Let X be a compact Hausdorff space, then
the space of all regular signed Borel measures on X equipped with the total variation norm is
linearly isometric to Cb.X / in the strong dual topology, by the map

� 7!

Z
X
f d� ; for every f 2 Cb.X /:

An important example of this is when .X ;BX / is a compact metric space, then all Borel

measures are regular andM.X / is linearly isometric to the dual space of Cb.X /.

The total variation norm

We have already seen that that the total variation norm makesMba.X ;BX / into a Banach

space and it is linearly isometric to the strong dual of B.X / by Theorem 3.1. The collection

of finite signed measures,M.X /, is a closed linear subspace and hence also a Banach space

in this topology (see e.g. [13, Theorem 4.6.1]).
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However, the topology generated by the total variation norm onM.X / is too strong for most

probabilistic applications. An example, which highlights this fact is the following. Consider

the Dirac measures ıx defined by

ıx.A/ WD

(
1; x 2 A;

0; x … A:

These are elements ofM.X /, however, if .x˛/ is a sequence of distinct elements in X , then

the sequence of Dirac measures .ıx˛ / never converges to ıx , even if X is a metric space and

.x˛/ converges to x. Thus themap x 7! ıx is not continuous fromX toM.X / equippedwith
the the total variation norm. Especially, the empirical distributions which we are interested

in are not continuous in the total variation norm. Generally, the total variation norm is a

too strong topology onM.X / and its subspaces for probabilistic purposes, which motivates

the �-topology that is a much weaker topology.

The � -topology
In this section we assume that X is a measurable space with ��algebra B and that all

spaces of measures are taken over .X ;B/. Using the dual correspondence between B.X /
andMba.X / given by Theorem 3.1 it is possible to equipMba.X / with the weak* topology

induced by B.X /.
Definition 3.4. Let .X ;B/ be a measurable space, then the topology on M.X / inherited
fromMba.X / equipped with the weak* topology is called the � -topology 7

.

Thus, the �-topology is the weakest topology for which the evaluation maps

� 7�!

Z
X
f d�

are continuous for every f 2 B.X /. The definition and basic properties of weak topologies

are given in Appendix A.4. It follows from the definition of the weak* topology that a

neighborhood basis of � 2 M.X / in the ��topology is given by�
� 2 M.X / W

ˇ̌̌ Z
X
fi d� �

Z
X
fi d�

ˇ̌̌
< "; f1; : : : ; fn 2 B.X /; " > 0

�
:

The �-topology is much weaker than the total variation norm; however, in general the maps

x 7! ıx are not continuous with respect to the �-topology. This can be seen by noting that if

a net x˛ ! x in X then ıx˛ ! ıx in the �-topology if and only if f .x˛/! f .x/ for every

f 2 B.X /. However, every function satisfying this convergence criteria is continuous.

Thus the map x 7! ıx is �-continuous if and only if B.X / � Cb.X /. Furthermore, the

�-topology is in general not metrizable and nor are the subspaces of greatest interest to us

in this topology: M.X /;MC.X /;M1.X /. In factM1.X / is not metrizable in the �-topology

if there exists an element � 2 M1.X / that satisfies �.x/ D 0 for every x 2 X . A proof of

this fact is outlined in exercise 9.1.15 of [48].

An interesting observation is that the only topological information about X which is trans-

ferred to MC.X / in the �-topology is the one contained in the �-algebra BX . However,

7
Some authors refer to this topology on M.X / as the strong topology which can be misleading as it is not the

topology inherited from the strong dual of B�.X /, i.e. Mba.X ;B/, with the total variation norm.

23



the spaces we study will in general be metrizable, hence contain a lot of topological struc-

ture. Continuous functions provide a lot more topological information than the bounded

measurable functions. Furthermore if x˛ ! x thenZ
X
f dıx˛ D f .x˛/! f .x/ D

Z
X
f dıx ; for every f 2 Cb.X /;

which motivates using the maps hf; �i, where f 2 Cb.X /, to induce a weak topology on

M.X / instead.

The topology of weak convergence
In this section we place a topology on M.X ;BX / by noting that for every � 2 M.X / and
C �
b
.X / the map

hf; �i WD

Z
X
f d� ; for everyf 2 Cb.X / (23)

defines a dual pairing. However, the representation ofC �
b
.X / given in Theorem 3.3 involves

finitely additive measures defined on the Borel algebra of X . Therefore, we cannot simply

identify M.X / with a subspace of Mrba.X /. 8
We will assume that X is a metric space,

then all Borel measures are regular. Regular measures are uniquely determined by their

values on closed sets and on normal spaces Urysohn’s Lemma can be applied to show that

the maps

� 7!

Z
X
f d� :

are separating onMr .X /. Hence, the dual pairing above induces a weak topology onM.X /.

Definition 3.5. Let X be a metric space, then the weak topology generated by the dual

pairing (23) is called the topology of weak convergence or simply theweak topology onM.X /.
A neighbourhood basis for � 2 M.X / in this topology is given by�

� 2 M.X / W
ˇ̌̌ Z

X
fi d� �

Z
X
fi d�

ˇ̌̌
< "; f1; : : : ; fn 2 Cb.X /; " > 0

�
It follows from the properties of weak topologies (see Theorem A.7) that a net .�˛/ con-

verges to � in this topology iff

R
f d�˛ !

R
X f d� for every f 2 Cb.X /. This type

of convergence is called weak convergence of measure. Weak convergence in metric spaces

are studied more in detail in section 3.3. We shall make some quick remarks regarding

closed subspaces of M.X /. The subspaces of greatest interest to us are M1.X /, M�1.X /,
and MC.X /, which are closed subspaces of M.X / in the topology of weak convergence.

This is easily seen since the constant function 1 2 Cb.X /, and therefore if a net .�˛/ con-

verges to �

�˛.X /! �.X /;
which shows that M1.X / is closed under limits. Borel regularity of the measures ensure

that the limit of nonnegative measures are nonnegative and the subspaces M�1.X / and
MC.X / are also closed. Many important topological properties such as separability and

completeness are inherited forMC.X / in the the topology of weak convergence. In Section

3.3, we prove thatMC.X / is a Polish space if and only ifX is a Polish space. The next section

8
In the special case when X is a compact metric space, then Riesz Representation Theorem states that M.X /

is linearly isomorphic to the dual of Cb.X /.
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covers the theory of Borel measures and continuous functions on metrizable spaces. The

theory presented will be essential to our study of weak convergence on metrizable spaces

in Section 3.3.

3.2 Metrizable Spaces
This section reviews some of the topological properties of of metrizable spaces. The aim is to

introduce the topological results necessary for studying weak convergence of measures on

metrizable spaces. A topological space .X ; T / is said to bemetrizable if there exists a metric

d such that the metric space .X ; d / is homeomorphic to .X ; T /. The notion of equivalent

metrics has different different definitions in the literature and in order to avoid confusion we

say that two metrics are topologically equivalent if they generate the same topology. There

are many topologically equivalent metrics on any metrizable space and given a metric d on

X it is always possible to define an equivalent bounded metric given by

db D
d

1C d
:

A special class of metrizable spaces which are of great interest in probability theory are the

Polish spaces.

Definition 3.6. A topological space .X ; T / is said to be a Polish space if it is separable and
metrizable with a complete metric.

Remark. Ametric that is topologically equivalent to a completemetricmay not be complete,

an example of this is given below.

Example 2 (Equivalent complete and non-complete metrics). Consider the set .�1; 1/ in

the subspace topology inherited from R with the standard euclidean topology. Then, the

euclidean distance induces a metric on .�1; 1/ which is not complete, since it is possible to

construct Cauchy sequences converging to the limit points �1 and 1. On the other hand, a

topologically equivalent complete metric on .�1; 1/ is given by

d.x; y/ D
jx � yj

1 � jx � yj2
:

Whilst completeness depends on the choice of metric, separability is a topological property

which is preserved by homeomorphisms, and therefore not affected by the choice of met-

ric. It is well known that a metric space is compact if and only if it is complete and totally

bounded (see e.g. [5, Theorem 3.28]). Furthermore, as a consequence of Urysohn’s metriza-

tion theorem, on metrizable spaces separability is equivalent to the existence of a totally

bounded metric.

Theorem 3.5. A metrizable space, X , is separable if and only if X admits a totally bounded
metric.

Proof. Let X be a separable metrizable space. Then by Urysohn’s metrization theorem (see

e.g. [5, Theorem 3.40]) there exists an isometric embedding ' of X into the Hilbert Cube

H D Œ0; 1�N . The unit interval Œ0; 1� is a compact metric space with the usual euclidean

distance metric and Tychonoff’s Theorem implies that the Hilbert cube is compact. Fur-

thermore, since H is a countable product of metric spaces it is metrizable (see e.g. [5, Thm
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3.36]) and a metric on H is given by

dH.x;y/ D
1X
nD1

1

2n
jxn � ynj

1C jxn � ynj
; x;y 2 H:

The spaceH is compact, thus dH is a totally bounded metric onH, which induces a a totally

bounded metric on X given by

d.x; y/ WD dH
�
'.x/; '.y/

�
:

Next, we show the reverse implication. Assume that X is a metrizable space and that d is

a totally bounded metric on X , i.e. for every " > 0 there exists a finite collection of points

.xi /
k
iD1 in X satisfying

X D
k[
iD1

B.xi ; "/:

Thus, for each n 2 N there exists a finite collection of pointsDn satisfying

X D
[

xi2Dn

B.xi ; 1=n/:

Define D D [1nD1Dn, then D is a countable subset of X and we claim that D D X . Let

x 2 X , then it follows from the construction of the sets Dn that we can create a sequence

of points .xn/ such that xn 2 Dn and

x 2 B.xn; 1=n/; for every n 2 N:

Thus xn ! x, which proves that x is a limit point of D. It follows that D is dense in X ,

and that X is separable.

�

The previous theorem shows that Polish spaces share some properties with compact metric

spaces; they admit a complete metric and a topologically equivalent totally bounded metric.

However, a as example 2 shows, a Polish space is in general not compact, the complete

metric may not be the totally bounded metric. In fact, since compactness is a topological

property it follows that every topologically consistent metric on a compact metrizable space

is totally bounded and complete.

The Distance Function
Let X be a metric space with metric d and A � X , then we define the distance function
d.x;A/ W X ! Œ0;1� by

d.x;A/ WD inf

y2A
d.x; y/:

For fixed x 2 X we call d.x;A/ the distance between x and A. Similarly, we define the

distance between two sets as

d.A;B/ WD inf

x2A;y2F
d.x; y/

A very useful property of the distance function is that it is uniformly continuous on X and

this holds for every metric d and every A � X .
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Lemma 3.2. Let .X ; d / be a metric space and A � X , then the distance function d.�; A/ is
uniformly continuous on X .

Proof. Let A � X and x; y 2 A, then the triangle inequality implies that

d.x;A/ � d.x; y/C d.y;A/

d.y; A/ � d.x; y/C d.x;A/
(24)

Rearranging, we get that

�d.x; y/ � d.x;A/ � d.y;A/ � d.x; y/: (25)

Let " > 0 and choose ı D ", then by equation (25) it follows that if d.x; y/ < ı

jd.x;A/ � d.y;A/j < ";

which shows that d.�; A/ is uniformly continuous.

�

It follows directly from the proof that d.�; A/ is not only uniformly continuous but also Lip-

schitz continuous with Lipschitz constant 1. Next we present a strengthening of Urysohn’s

Lemma for closed sets in metric spaces with positive distance between them.

Lemma 3.3 (Urysohn’s Lemma in Metric Spaces). Let X be a metric space and A;B � X
be two disjoint nonempty closed subsets of X . If there exists a ı > 0 such that d.A;B/ � ı,
then there exists a bounded uniformly continuous function f W X ! Œ0; 1� which satisfy

f .x/ D

(
1 x 2 A;

0 x 2 B:

A direct proof is presented below. Another proof can be found in [11, Lemma 2.1] that relies

on special properties of uniformly continuous functions.

Proof. Let A;B be disjoint nonempty closed subsets of X , and define the function

f .x/ WD
d.x; B/

d.x; A/C d.x; B/
:

Then it is clear from this definition that f D 0 onB , and f D 1 onA. We are going to show

that f is uniformly continuous. Let ı > 0 and d.A;B/ � ı and x; y 2 X , then

jf .x/ � f .y/j D

ˇ̌̌̌
d.x; B/

d.x; A/C d.x; B/
�

d.y; B/

d.y; A/C d.y; B/

ˇ̌̌̌
D

ˇ̌̌̌
d.x; B/Œd.y; A/C d.y; B/� � d.y; B/Œd.x; A/C d.x; B/�

.d.x; A/C d.x; B//.d.y;A/C d.y; B//

ˇ̌̌̌
�
jd.x; B/Œd.y; A/C d.y; B/� � d.y; B/Œd.x; A/C d.x; B/�j

ı2

D
jd.x; B/d.y;A/ � d.y; B/d.x;A/j

ı2
:
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By subtracting and adding the term d.y;A/d.y; B/ and an application of the triangle in-

equality, we get that

jf .x/ � f .y/j �
jd.x; B/d.y;A/ � d.y;A/d.y; B/C d.y;A/d.y; B/ � d.y; B/d.x;A/j

ı2

D
j.d.x; B/ � d.y; B//d.y;A/C .d.y; A/ � d.x;A//d.y; B/j

ı2

�
1

ı2
jd.x;A/ � d.y;A/jd.y; B/C

1

ı2
jd.x; B/ � d.y; B/jd.y;A/j:

(26)

By Lemma 3.2 it follows that the functions d.�; A/; d.�; B/ are bounded and uniformly con-

tinuous. Let

M D max

�
sup

x2X
d.x;A/; sup

x2X
d.x; B/

�
<1;

and " > 0. Then, by the uniform continuity there exists a � > 0 such that jx � yj < �

implies that

jd.x;A/ � d.y;A/j � "
ı2

2M
; jd.x; B/ � d.y; B/j � "

ı2

2M
:

Combined with equation (26) this shows that that

jx � yj < � H) jd.x;A/ � d.y;A/j < ";

hence, f is uniformly continuous.

�

Spaces of Bounded Continuous Functions
Definition 3.7. LetX bemetrizable space, thenwe defineCb.X / to be the space of bounded
continuous real valued function on X , equipped with the uniform norm

kf k1 D sup

x2X
jf .x/j:

The space Cb.X / is a Banach Space and if X is a metrizable space, then Cb.X / is compact

if and only if X is compact.

Theorem 3.6 ([21, Theorem 6.6].). Let X be a metrizable space, then Cb.X / is separable if
and only if X is compact.

A class of very useful subspaces of Cb.X / are those consisting of uniformly bounded con-

tinuous functions.

Definition 3.8. Let X be a metrizable space and d a metric on X , then we define Ub.X ; d /
to be the space of bounded uniformly continuous functions on .X ; d /.
When the metric d is clear from context we drop it from the notation and simply write

Ub.X /. Since uniform continuity is dependent on the metric d , there is not a unique sub-

space of uniformly continuous functions, but every admissible metric d on X has its corre-

sponding subspace Ub.X ; d / � Cb.X /. The next lemma shows that for every metric d on

a metrizable space the collection of uniformly bounded continuous functions Ub.X / forms

a closed subspace of Cb.X /.
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Theorem 3.7. Let X be a metric space, then Ub.X / is a closed subspace of Cb.X / under the
uniform norm.

Proof. We will show that Ub.X / is closed under a limits, hence a closed subset of Cb.X /.
Let f be a limit point of Ub.X / and .fn/ a sequence in Ub.X / converging to f . It is clear

that f must be bounded since it is an element of the space Cb.X /. It remains to show that

the limit is uniformly continuous. This is showed by an application of the triangle inequality

and a classical "=3 argument. By the triangle inequality

jf .x/ � f .y/j � jf .x/ � fn.x/j C jfn.y/ � f .y/j C jfn.x/ � fn.y/j;

The convergence of .fn/ to f in the uniform norm implies that for every " > 0 there exists

N 2 N such that

n � N H) kf � fnk1 D sup

x2X
jf .x/ � fn.x/j <

"

3
:

Fix any n � N , then it follows that

jf .x/ � f .y/j � jfn.x/ � fn.y/j C
2"

3
:

By the uniform continuity of fn it follows that there exists ı > 0 such that jx � yj < ı

implies

jfn.x/ � fn.y/j <
"

3
:

Thus, for jx � yj < ı we get

jf .x/ � f .y/j < ";

which shows that the limit f is uniformly continuous.

�

In contrast to the space Cb.X /, compactness is not a necessary condition for Ub.X ; d / to
be separable and it suffices that the space .X ; d / is totally bounded for Ub.X ; d / to be

separable.

Theorem 3.8. Let .X ; d / be a totally bounded metric space, then Ub.X ; d / is separable.
The proof below follows the proof given in Parthasarathy [41, Lemma 6.3]. The main idea

is to show that Ub.X ; d / is isometric to a subset of the separable metric space C. OX / and
therefore it is separable.

Proof. Let .X ; d / be totally bounded and OX denote its completion, then OX is totally bounded

and complete and therefore compact. Any function f 2 Ub.X ; d / can be uniquely extended
to a function

Of 2 Ub. OX ; d / such that Of 
1
D kf k1;

see e.g. [5, Lemma 3.11]. The map which takes f to
Of is an isometric embedding of

Ub.X ; d / into Ub. OX ; d / and Ub.X ; d / is homeomorphic to a subset of Ub. OX; d/. Further-

more, as the space OX is compact, it follows that Ub. OX; d/ D Cb. OX /, which is a separable

metric space by Theorem 3.6. Thus Ub.X ; d / is isometric to a subset of a separable metric

which implies that Ub.X ; d / is separable.
�
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By Theorem 3.5 ametrizable space is separable if and only it admits a totally boundedmetric,

hence Theorem 3.8 implies the following.

Corollary 3.1. LetX be a separable metrizable space, thenX admits a metric d which makes
Ub.X ; d / separable.

Measures on Metrizable Spaces
In this section we present some important results about Borel measures defined on metriz-

able spaces. A very useful property of Borel measures on metrizable spaces is that they are

regular, i.e. the measure of a Borel set can be approximated from within by closed sets and

approximated from without by open sets. We start with the definitions of regular and tight

measures.

Definition 3.9. A Borel measure � defined on a topological space is to be tight if for every
A 2 BX , and every " > 0 there exists a compact set K" � A such that

�
�
A nK"

�
< ":

Similarly to regular measure a tight measure is completely determined by its value on com-

pact sets, and if� is tight andA 2 BX , then there exists a sequence of compact setsKn � A

such that

lim

n!1
�.Kn/ D �.A/:

Tightness is a stronger criterion than regularity of measures on metrizable spaces and the

concept is closely related to weak convergence of probability measures on Polish spaces. In

fact all Borel measures on metrizable spaces are regular and in Polish spaces every Borel

measure is tight. This result will be used throughout this chapter and a proof of this can be

found in Bogachev [13, Thm 7.1.7].

Theorem 3.9. Let X be a metrizable space and � a Borel measure on X , then � is regular,
furthermore if X is Polish, then � is tight.

Whenever the space X is normal it is possible to achieve an integral variant of the crite-

rion for equivalence of regular Borel measures. Two regular Borel measures are equivalent

if their integrals over the space X agree for every bounded continuous function on X . In

metrizable spaces an even smaller class of functions suffices to determine whether two mea-

sures agree.

Theorem 3.10. Let .X ; d / be a metric space and �; � be two Borel measures on X . Then
� D � if Z

X
f d� D

Z
X
f d� ; for every f 2 Ub.X ; d /:

The general idea of the proof is to show that � and � agree on closed sets, and since Borel

measures on metric spaces are regular this implies that they agree on all Borel measurable

sets.

Proof. Let C � X be closed and �; � be two regular Borel measures satisfying the state-

ments of the Theorem. Define the sets Cn D fx 2 X W d.x; C / < 1
n
g to be the open

neighbourhoods of C consisting of points which lie within distance 1=n from C . The sets

Cn are open since they can be expressed as a union of open sets:

Cn D
[
x2C

B.x; 1=n/:
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The complements C c
n are disjoint with C and satisfy d.C; C c

n/ �
1
n
thus we may apply

Urysohn’s Lemma for metric spaces (Lemma 3.3). Let fn be a sequence of bounded uni-

formly continuous function taking values in Œ0; 1� and satisfying

fn.x/ WD

(
1; x 2 C;

0; x 2 C c
n:

The sets fCng form a decreasing sequence of measurable sets with \Cn D C , hence, by

continuity of measure

�.C/ � lim

n!1

Z
X
fn d� � lim

n!1

Z
Cn

d� D �.C/: (27)

The same holds for the measure �,

�.C / � lim

n!1

Z
X
fn d� � lim

n!1

Z
Cn

d� D �.C /: (28)

Since, the integral of of � and � agrees for every uniformly bounded continuous function

it follows from equations (27) and (28) that �.C/ D �.C /. This holds for every closed set,

thus it follows from regularity of Borel measures on metric spaces that � D �.

�

3.3 Weak Convergence of Measures on
Metric Spaces

This section studies the properties of M.X / and its subspaces MC.X / and M1.X / in the

topology of weak convergence when X is a metrizable space. There are many great refer-

ences that treat weak convergence of probability measures: Partasarathy [41], Bertsekas

& Shreve [9], Billingsley [12], Stroock [48], and Aliprantis & Border [5] are just a few.

However, in some situations the measures of interest are not guaranteed to be probabil-

ity measures. An example of this is the empirical distribution of the IS estimator, which we

study more closely in section 3.4. Many of the results from the theory of weak convergence

of probability measure holds in the space MC.X / of nonnegative finite measures. In fact,

most of the results in Varadarajan’s groundbreaking paper [51] on weak convergence in

separable metric spaces are proven in the latter more general setting.

In this section we prove that many known weak convergence results, such as the Port-

manteau Theorem hold inMC.X /. We show that much of the structure of X carries over to

MC.X / and thatX is a separable metrizable space if and only ifMC.X / is separable metriz-

able space. Most proofs are based on the proofs given in the references above, but modified

to hold in ourmore general setting. However, themain ideas underlyingmost of this chapter

can be traced back to [51] and also [4] and [11] for the Portmanteau Theorem.

Since we have not shown that the weak topology onM.X / is first countable we cannot use
sequences to characterize the convergence in this topology and we will instead work with

nets for most of this section. In appendix A.3 the definition of nets can be found together

with some facts about convergence in topological spaces. Let us restate the definition of

weak convergence.
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Definition 3.10. Let X be a metrizable space, then a net .�˛/ in M.X / converges weakly
to � 2 M.X / if

lim

˛

Z
X
f d�˛ D

Z
X
f d� ; for everyf 2 Cb.X /:

We write �˛ H) � to denote that �˛ converges to � weakly.

Remark. In the definition of weak convergence we have used nets to characterize conver-

gence and not sequences. The reason behind this is that we have not proved that the topol-

ogy of weak convergence on MC.X / is first countable, and thus sequences cannot be used

to characterize important topological concepts such as continuity or limit points. However,

we will see later that X is a separable metrizable space if and only if the space MC.X / is
metrizable and separable in which case working with sequences is perfectly fine.

The following theorem, known as the Portmanteau Theorem, gives several useful equivalent

criteria for weak convergence of measures. Our proof is adapted from the one given by

Partasarathy in [41, Theorem 6.1] and Billingsley in [11], which only prove the result for

probability measures. The main ideas behind the Portmanteau Theorem go back to the work

by Alexandroff [4].

Theorem 3.11 (Portmanteau Theorem). Let X be a metrizable space and .�˛/ be a net in
MC.X / and � 2 MC.X /, then the statements below are equivalent.

1. �˛ H) �.

2. lim˛
R
X f d�˛ D

R
X f d� for every f 2 Ub.X /:

Furthermore, if lim˛ �˛.X / D �.X /, then each of the following is equivalent to weak conver-
gence.

3. lim sup˛ �˛.C / � �.C/ for every closed C � X .

4. lim inf˛ �˛.U / � �.U / for every open U � X .

5. lim˛.A/ D �.A/ for every A 2 BX satisfying �.@A/ D 0.

Note that if all measures involved are probability measures, then�˛.X / D �.X / D 1 for all
˛ and all of statements above are equivalent. Normally the Portmanteau Theorem is stated

only for the subspace M1.X /, but this generalized version will be useful to us later. The

extra criterion for the equivalence of points 3-5 above to hold is not as limiting as it may

seem, since it only concerns the limit over the entire space X .

Proof. The implication 1 H) 2 follows directly from the definition of weak convergence

and the implication 2 H) 1 follows from Theorem 3.10.

Now, assume that lim˛ �˛.X / D �.X /. To prove that 2 H) 3 we use Urysohn’s Lemma

in metric spaces, Lemma 3.3. Let Cn D fx 2 X W d.x; C / < 1
n
g be the open sets of points

which lie within distance 1=n of C . Then, the complements C c
n are disjoint from C and

satisfy d.C; C c
n/ �

1
n
. Thus, we can create a sequence of bounded uniformly continuous

functions .fn/ taking values in Œ0; 1� and

fn WD

(
1; x 2 C;

0; x 2 C c
n:
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The sets fCng form a decreasing sequence of measurable sets with \Cn D C , hence, by

continuity of measure,

lim

n!1

Z
X
fn d� � lim

n!1

Z
Cn

d� D �.C/: (29)

The functions fn 2 Ub.X /, thus by property 2 we get that

lim sup

˛

�˛.C / D lim sup

˛

Z
C

d�˛ � lim sup

˛

Z
X
fn d�˛ D

Z
X
fn d� :

Hence, by applying the limit in equation (29) the third statement follows. Next, we show

that 3 H) 4. Let U be an open set, then the complement is closed and using 3 combined

with the fact that �˛.X / D �.X /, for every ˛, leads to the inequality

lim inf

˛
�˛.U / D lim inf

˛
Œ�˛.X / � �˛.U c/� � lim inf

˛
�˛.X / � lim inf

˛
�˛.U

c/

� �.X / � lim sup

˛

�˛.U
c/ � �.X / � �.U c/ D �.U /:

From the above, it is apparent that 3 and 4 are equivalent, and combined they imply 5. To

see this, let A 2 BX satisfy �.@A/ D 0, then

�.Ao/ D �.A/ D �.A/:

3 and 4 gives the inequalities

lim sup

˛

�˛.A/ � lim sup

˛

�˛.A/ � �.A/ D �.A/:

lim inf

˛
�˛.A/ � lim inf

˛
�˛.A

o/ � �.Ao/ D �.A/:

combining, these prove that

lim inf

˛
�˛.A/ D lim sup

˛

�˛.A/ D �.A/:

Finally, we show that 5 H) 1. Let f 2 Cb.X /, and .a; b/ be an open interval that

contains the image of f . The distribution of f , given by �f D � ı f �1 is a probability

measure on .R;B.R//, hence finite, which implies that the collection of points such that

�.ff D tg/ > 0 is at most countable. For any " > 0 we can make a partition…."/ of .a; b/

such that

(a) a D t0 < t1 < t2 < � � � < tn D b

(b) �.ff D tig/ D 0 for every ti 2 …."/

(c) ti � ti�1 < " for every i D 1; : : : ; n.

Then we can approximate f by the simple function

' D

nX
iD1

ti�11Fi ; Fi D fx 2 X W ti�1 � f .x/ < tig:

By the construction of these sets it follows from (b) that

�.@Fi / D �.ff D ti�1g/C �.ff D tig/ D 0;
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and furthermore (c) implies that jf � 'j < " on all of X . Consequently, since the measures

�˛ and � are all finite measures, we get thatZ
X
jf � 'j d�˛ < "�˛.X /;

Z
X
j' � f j d� < "�.X /:

Thus, by the triangle inequality we obtain the boundˇ̌̌̌Z
X
f d�˛ �

Z
X
f d�

ˇ̌̌̌
�

ˇ̌̌̌Z
X
' d�˛ �

Z
X
'd�

ˇ̌̌̌
C "�˛.X /C "�.X /

�

nX
iD1

ti�1j�˛.Fi / � �.Fi /j C "�˛.X /C "�.X /:

Since the sets Fi all have boundaries with measure zero property 5 implies that

lim

˛

nX
iD1

ti�1j�˛.Fi / � �.Fi /j D 0;

and

lim

˛
�˛.X / D �.X /:

Hence,

lim

˛

ˇ̌̌̌Z
X
f d�˛ �

Z
X
f d�

ˇ̌̌̌
� 2"�.X /;

and this holds for arbitrary " > 0, which implies that �˛ H) �.

�

Following up on the previous remark, the Portmanteau Theorem is commonly stated for

sequences of measures only and not for nets. Then it is possible to show that 5 implies

either 3 or 1 by using Lebesgue’s Bounded Convergence Theorem or Fatou’s Lemma for

some sequence of functions created from �n. However, that is not possible when working

with nets as those results are only valid for sequences. There are several versions of the

Portmanteau Theorem and some of the equivalences hold under weaker criteria in subsets

of the space of finite measures and even when X is not a metrizable space. Results of this

nature in more general topological spaces can be found in the work by Topsøe [49, see

especially Thm 8.1 page 40] and in Chapter 8 of Bogachev [13].

We will now move on with our study of nonnegative finite measures in the weak topology

by using the second part of the Portmanteau Theorem to show that ifUb.X ; d / is separable,
then in order to prove weak convergence it is sufficient to show that the integral conver-

gence criteria of weak convergence holds for a countable dense subset of Ub.X ; d /.
Theorem 3.12. Let .X ; d / be a metric space. If Ub.X ; d / is separable, then there exists a
countable collection ffng � Ub.X ; d / such that any net �˛ H) � in MC.X / if

lim

˛

Z
X
fn d�˛ D

Z
X
fn d� ; for every n 2 N:

Proof. Let Ub.X ; d / be separable and ffng � Ub.X ; d / a countable dense subset. Let .�˛/
be a net in MC.X /, � 2 MC.X /, and assume that

lim

˛

Z
X
fn d�˛ D

Z
X
fn d� ; for every n 2 N: (30)
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Let f 2 Ub.X ; d /, thenˇ̌̌̌Z
X
f d�˛ �

Z
X
f d�

ˇ̌̌̌
�

ˇ̌̌̌Z
X
fn d�˛ �

Z
X
fn d�

ˇ̌̌̌
C

Z
X
jf � fnj d�˛ C

Z
X
jfn � f j d�

(31)

For every ", there exists n 2 N such that

kf � fnk1 < ":

Thus, it follows from equation (31) thatˇ̌̌̌Z
X
f d�˛ �

Z
X
f d�

ˇ̌̌̌
<

ˇ̌̌̌Z
X
fn d�˛ �

Z
X
fn d�

ˇ̌̌̌
C "�˛.X /C "�.X /;

for every " > 0. The separability of ffng � X combined with equation (30) implies

that

lim

˛
�˛.X / D �.X /:

Hence, by taking limits with respect to ˛ it follows that

lim

˛

ˇ̌̌̌Z
X
f d�˛ �

Z
X
f d�

ˇ̌̌̌
< 2"�.X /;

for every " > 0. Thus

lim

˛

Z
X
f d�˛ D

Z
X
f d� ; for every f 2 Ub.X ; d /;

and the Portmanteau Theorem (Theorem 3.11) therefore implies that �˛ H) �.

�

Auseful property of the topology of weak convergence is that themap x 7�! ıx whichmaps

points ofX to their Dirac measures inM.X / is not only continuous, but also an embedding.

Thus X is homeomorphic to fıx W x 2 X g � M.X /.
Lemma 3.4. LetX be ametric space, thenX can be embedded intoM.X / by the map x 7! ıx .

Proof. Let ' W X ! M.X / be the map defined by x 7! ıx . We want to show that '

is a homeomorphism of X onto '.X / D D. We start by showing that ' is injective. Let

x; y 2 X and x ¤ y, then it is clear that ıx ¤ ıy since

1 D ıx.fxg/ ¤ ıy.fxg/ D 0:

In order to prove that the map ' is bicontinuous is suffices to show that x˛ ! x in X if and

only if ıx˛ ! ıx inM.X / for every net in .x˛/ in X (see Theorem A.6).

Let x˛ ! x, and f 2 Cb.X / then f .x˛/! f .x/ and thereforeZ
X
f dıx˛ !

Z
X
f dıx ;

which shows that ' is continuous. We prove the converse by proving the contrapositive.

Let x˛ 6! x, and f 2 Cb.X /, then f .x˛/ 6! f .x/, which implies thatZ
X
f dıx˛ 6�!

Z
X
f dıx :

Hence, ıx˛ 6H) ıx proving that '
�1

is continuous. It follows that ' is a homeomorphism

onto its image.

�
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Metrizability ofMC.X /
We are now ready to prove one of the main theorems regarding the topological properties

of the spaceMC.X /, which statesMC.X / is separable and metrizable if and only if X is so

as well. This result is originally by Varadarajan [51] and we present his proof below.

Theorem 3.13. The space MC.X / is separable and metrizable if and only if X is separable
and metrizable.

Proof. The idea is to prove thatMC.X / can be embedded into a separable metric space and

hence is separable and metrizable. Let X be a separable metrizable space, then there exists

a totally bounded metric d on X which makes the space Ub.X ; d / separable (see Theorems

3.5 and 3.8). By Theorem 3.12 there exists a countable collection ffng � Ub.X ; d / such that
a net .�˛/ 2 MC.X / converges to � 2 MC.X / if and only if

lim

˛

Z
X
fn d�˛ D

Z
X
fn d� ; for every n 2 N: (32)

Let T W MC.X /! RN
be the map defined by

T .�/ D
�R

X f1 d� ;
R
X f2 d� ; : : :

�
We are going to show that T is an embedding. We start by showing that T is injective. Let

� ¤ �, then by Theorem 3.10 there exists a function f 2 Ub.X ; d / such thatZ
X
f d� ¤

Z
X
f d� :

Since the collection ffng is dense in Ub.X ; d / it follows that there exists fk 2 ffng such
that Z

X
fk d� ¤

Z
X
fk d� ;

which implies that T .�/ ¤ T .�/. Next, we show that T is continuous. Let �˛ ! � in

MC.X /, then it follows from equation (32) that T .�˛/ ! T .�/ coordinate-wise, which

implies that that T .�˛/! T .�/ in the product topology on RN
.

It remains to show that T �1 is continuous. Let .�˛/ be a net inX and T .�˛/! T .�/. Then

by Theorem 3.12�˛ H) �, which shows that T �1 is continuous. Thus T is an embedding

and it follows that MC.X / is homeomorphic to a subset of a separable metrizable space,

hence MC.X / is separable and metrizable.

To prove the converse we assume that MC.X / is separable and metrizable. By Lemma 3.4

X is homeomorphic to the subset of Dirac measures in MC.X /. Hence, X is separable and

metrizable.

�

The embedding, T , ofMC.X / into the separable metric space RN
which is used in the proof

of Theorem 3.13 is very useful and we will use it several times in this section. It follows

from Theorem 3.13 that MC.X / is metrizable, and hence second countable, whenever X
is separable and metrizable. With this in mind we will work with sequences of measures

instead of nets, whenever we know thatMC.X / is metrizable.
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Compactness inM.X /
In this subsection we study compact subsets ofM.X / and prove that if X is a metric space,

then M1.X / is compact if and only if X is compact. The general idea to show this relies

on Riesz Representation Theorem, Theorem 3.4, which states that when X is compact, then

the dual of C �
b
.X / is linearly isometric toM.X /. Thus, for compact metric space the topol-

ogy of weak convergence is the weak* topology induced by Cb.X / on its dual M.X /, and
we can use the Banach-Alaoglu Theorem to gain some insight into the compact subsets of

M.X /.
Lemma 3.5. Let X be a compact metrizable space and a; b be real numbers that satisfy 0 �
a � b, then the set f� 2 M.X / W a � �.X / � bg is a compact subset of M.X / in the
topology of weak convergence.

Proof. Let 0 � a � b and let K D f� 2 MC.X / W a � �.X / � bg. It follows from

the Banach-Alaoglu Theorem (see e.g. [29, p. V.4.3]) K � MC.X / is compact in the weak*

topology ifK is bounded in the total variation norm and closed in the weak* topology. It is

clear that the sets K are bounded in the total variation norm, since

k� � �kTV � j�j.X /C j�j.X / � 2b; for every W �; � 2 K:

Furthermore it is clear from the definition of weak convergence that if �˛ H) �, then

by using the constant function 1 as a test function, �˛.X /! �.X /, which implies that K

is closed under limits and thus closed. Hence K is compact by the Banach-Alaoglu Theo-

rem.

�

Especially, it follows that the spaces M1.X / and M�1.X / are compact in the topology of

weak convergence. Combining the above with the embedding of X into M.X / given in

Lemma 3.4 we get the following useful result.

Lemma 3.6. The space M1.X / is compact and metrizable if and only if X is compact and
metrizable.

Proof. Let X be compact and metrizable, then it follows from the previous Lemma that

M1.X / is compact. Conversely, assume that M1.X / is compact. By Lemma 3.4 the space X
is homeomomorphic to the set of Dirac measures in X , which is a subset of the compact

and metrizable space M1.X /. Hence, X is compact and metrizable.

�

Separability and Completeness
In this section we study the separability and completeness properties of MC.X / in greater

detail. The main result of this section , due to Varadarajan [51], is given in Theorem 3.14

below which states that X is Polish if and only ifMC.X / is Polish.
Lemma 3.7. Let X be a compact metrizable space, thenMC.X / is Polish.
Proof. Let X be compact and metrizable with d any admissible metric for the topology on

X . Then Cb.X / D Ub.X ; d / is separable by Theorem 3.6 and therefore, by Theorem 3.12

there exists a countable dense subset ffng � Ub.X ; d / such that a net .�˛/ converges to

� 2 MC.X / if and only if

lim

˛

Z
X
fn d�˛ D

Z
X
fn d� ; for every n 2 N: (33)
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Thus, the map T W MC.X /! RN
defined by

T .�/ D
�R

X f1 d� ;
R
X f2 d� ; : : :

�
is a continuous embedding of MC.X / into RN

, which is a Polish space. A closed subset of

a Polish space is Polish, thus it suffices to show that the image T .MC.X // is a closed subset
of RN

. Let .xk/ be a sequence in T .MC.X // converging to some limit x 2 RN
, then the

sequence of measures �k D T
�1.xk/ 2 MC.X / satisfies

lim

k!1

Z
X
fn d�k D xn 2 R; for every n 2 N:

We need to show that there exists a measure � 2 MC.X / such that � D T �1.x/. By the

exact same reasoning as in the proof of Theorem 3.12 the limits

ƒ.f / WD lim

k!1

Z
X
f d�k 2 R

exist for every f 2 Cb.X /. It is clear thatƒ is positive functional onCb.X /, furthermore by

linearity of integration it follows thatƒ is linear. Hence, the Riesz Representation Theorem

implies that there exists a measure � 2 MC.X / such that

ƒ.f / D

Z
X
f d� ; for every f 2 Cb.X /:

By the definition of ƒ we see that �k H) �, and it follows that the image of MC.X /
under T is closed and therefore Polish.

�

Before we prove the main result of this section we introduce the following useful Lemma. It

is a generalization of Theorem 15.14 from [5] extended from probability measures to non-

negative finite measures.

Lemma 3.8. Let X and Y be Polish spaces and ' W X ! Y be an embedding. Then the map
'� W MC.X /! MC.Y/ defined by � 7! � ı '�1 is an embedding.

Proof. Let ' be an embedding of X ,! Y . Then ' is a homeomorphism onto its image, and

it follows that A 2 BX if and only if '.A/ 2 BY . Thus '� and '��1 are well defined. Next,
we show that '� is continuous. If f 2 Cb.Y/, then it follows from the continuity of ' that

f ı ' is a bounded continuous function on X and thatZ
X
f ı ' d� D

Z
Y
f d'�.�/ ;

for every � 2 M.X /. Thus, if .�˛/ is a net converging to � in MC.X / and f 2 Cb.Y/,
then

lim

n!1

Z
X
f d'�.�n/ D lim

n!1

Z
X
f ı ' d�n D

Z
X
f ı ' d� D

Z
Y
f d'�.�/ :

Hence, '� is continuous.

Next, we show that '� is injective. Let � ¤ � be elements of MC.X /. Since X is Polish it

follows from Theorem 3.9 that � and � are tight. Thus, there exists a compact set K � X
such that �.K/ ¤ �.K/. The compactness ofK ensures that the image '.K/ is compact in

Y and therefore closed and Borel measurable. Hence,

'�.'.K// D �.K/ ¤ �.K/ D '�.'.K//;
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which shows that '� is injective.

It remains to show that '�
�1

is a continuous map from the image of MC.X / under '�. Let
� D � ı '�1 2 '�

�
MC.X /

�
, and g 2 Cb.X /, then g'�1 2 Cb.Y/ andZ

X
g d� D

Z
Y
g ı '�1 d�

It follows from the above equality that if �n H) � in '�
�
MC.X /

�
, then �n H) � in

M.X / and '��1 is continuous. Which proves that '� is homeomorphism onto its image, i.e.

an embedding.

�

We are now ready to prove the main result of this section.

Theorem 3.14. MC.X / is a Polish space if and only if X is a Polish space.

Proof. Let X be a Polish space, then it follows from the separability of X that X admits

a totally bounded metric d . Let OX denote the completion of .X ; d /, which is also totally

bounded, hence compact. Thus, Lemma 3.7 implies that MC. OX / is Polish. Now, let ' be

the embedding of X into OX induced by the completion. Since X is Polish it follows that OX
also is Polish and therefore Lemma 3.8 implies that the map '� defined by � 7! � ı '�1 is

an embedding of MC.X / into MC. OX /. It follows from Alexandroff’s Lemma (see e.g. [53,

Theorem 24.12]) that every Gı subset of MC. OX / is Polish.
Now, we show that '�.MC.X // is Gı in MC

�
OX
�
. Since X is Polish it is Gı in OX (see e.g.

[53, Theorem 24.13]), i.e. there exists a sequence Gn of open sets such that

'.X / D
1\
nD1

Gn (34)

Note that '�1. OX / D '�1.X / D X , thus

'�1. OX X X / D '�1. OX / X '�1.X / D ;;

and

'�.MC.X // D f� 2 MC. OX / W �. OX X X / D 0g:
Combining this with equation (34), we get that

'�.MC.X // D f� 2 MC. OX / W �. OX X X / D 0/g

D

1\
nD1

n
� 2 MC. OX / W �

�
OX XGn

�
D 0

o
D

1\
nD1

1\
kD1

�
� 2 MC. OX / W �

�
OX XGn

�
<
1

k

�
:

We want to show that the sets

Uk;n D

1\
nD1

1\
kD1

�
� 2 MC. OX / W �

�
OX XGn

�
<
1

k

�
are open for every n; k 2 N or, equivalently, that the sets U c

k;n
are closed. Let .�˛/ be a

net in MC. OX / satisfying �
�
OX XGn

�
� 1=k that converges weakly to some � 2 MC. OX /.
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Then, since OX XGn is closed, it follows from the Portmanteau Theorem that

�
�
OX XGn

�
� lim sup

˛

�
�
OX XGn

�
�
1

k
;

which shows that � 2 U c
k;n

. It follows that the sets Uk;n are open and that '� .MC.X //
is Gı in MC

�
OX
�
, hence Polish. Thus, MC.X / is Polish, since '� is homeomorphic onto its

image.

Conversely, assume thatMC.X / is Polish. Then, sinceX is homeomorphic to the collection

of Dirac measures in MC.X / by Lemma 3.4, it suffices to show that fıx W x 2 X g is closed
with respect to weak convergence. Let .ıxn/ be a sequence inMC.X / that converges weakly
to some � 2 MC.X /, and assume for contradiction that � ¤ ıx for every x 2 X . It

follows from Lemma 3.4 that a sequence xn ! x in X if and only if ıxn H) ıx in

MC.X /. Any convergent subsequence of .ıxn/ converges to �, thus .xn/ cag have any

convergent subsequence .xnk /. This implies for every x ¤ xn there exists "x > 0 such

that B.x; "x/ \ xn D ; for every n 2 N . The union of these balls is open, hence the

complement, which is fxn W n 2 Ng, is closed. By assumption ıxn H) x, hence the

Portmanteau Theorem implies that

�
�
fxm W m 2 Ng

�
� lim sup

n!1

ıxn .fxm W m 2 Ng/ D 1: (35)

However, the same is true for every infinite subset of fxm W m 2 Ng. Especially, by

considering the disjoint subsets fx2m W m 2 Ng and fx2mC1 W m 2 Ng we get that

�.fxm W m 2 Ng/ � 2. But then equation (35) cannot hold, which is a contradiction.

Thus, there exists a subsequence xnk that converges to x, which implies that ıxnk H) ıx ,

and that fıx W x 2 X g is closed.
�

Tightness and Compact Subsets of Measures
In Polish spaces the relatively compact subsets of M.X / can be characterized by as exactly

those which are uniformly tight.

Definition 3.11. A collection F � M.X / is (uniformly) tight if for every " > 0 there exists
a compact set K such that

j�j.X XK/ < "; for every � 2 F:

The following theorem due to Prokhorov give a characterization of the relatively compact

subsets ofM.X / (see e.g. [13, Theorem 8.6.2]).

Theorem 3.15 (Prokhorov’s Theorem). Let X be a Polish space and K � M.X /. then K is
tight if and only if K is relatively compact.

Remark. Recall K � X is relatively compact if K D X and this is true if and only if every

sequence in K contains a weakly convergent subsequence.

For nonnegative measures we also have the following useful result (see e.g. [13, Theorem

8.3.4] for a slightly more general statement).

Theorem 3.16. Let X be a Polish space and .�n/ a sequence of measures in MC.X / that
converges weakly to � 2 MC.X /, then the collection f�ng is uniformly tight.

40



3.4 Empirical Distributions
Another interpretation of Monte Carlo estimators can be given through their empirical dis-

tributions. We define the empirical distribution of a sequence of i.i.d. random variables .Xi /

taking values in X to be the map Ln W �! M1.X / defined by

Ln.!/.E/ WD
1

n

nX
iD1

ıXi .!/.E/; ıXi .E/ D 1E ŒXi .!/�; E 2 BX ; ! 2 �: (36)

Note that the empirical distributions are not measures, as the name may suggest, however

for any fixed! 2 �, the value of Ln is a probabilitymeasure onX . Thus, wemay think of Ln
as a random variable taking values inM1.X /. Sanov’s Theorem, which we prove in the next

chapter, states that the distributions of the random variables Ln satisfy a large deviation

principle. A theorem proved by Varadarajan in [50] establishes an important fact about

the convergence of the empirical distributions: in separable metric spaces the empirical

distributions converge weakly to � almost surely. We are now going to extend this result

to the empirical distributions of the IS estimators defined in 2.2. The empirical distribution

of the IS estimator is given by

In.!/ WD
1

n

nX
iD1

�
�
Yi .!/

�
ıYi .!/:

Note that In is in general not a probability measure, since

In.!/.X / D
Z
X
dIn.!/ D

1

n

nX
iD1

�
�
Yi .!/

�
ıYi .!/: (37)

Thus, In.!/ is a probability measure if and only if �.Yi .!// D 1 for every i D 1; : : : ; n, and

the empirical distribution of the IS estimator is map from � into the space of all positive

signed measuresMC.X /. The result of Varadarajan given in [50] can be extended to In with
the proof practically unmodified.

Theorem 3.17. Let X be a separable metrizable space and .Yi / a sequence of i.i.d. random
variables taking values in X with distribution � . If X is another random variable on X with
distribution � � � , then the empirical distributions of the IS estimator, In, converge weakly
to � almost surely, i.e.

P .f! 2 � W In.!/ H) �g/ D 1:

Proof. Let f 2 B.X /, thenZ
X
f dIn.!/ D

1

n

nX
iD1

f
�
Yi .!/

�
�
�
Yi .!/

�
ıYi .!/:

The strong law of large numbers (Theorem A.4) implies that

lim

n!1

Z
X
f dIn.!/ D

Z
X
f� d� D

Z
X
f d� ; a.s. (38)

SinceX is separablewemay choose a totally boundedmetric d onX , by Theorem 3.5. In this

metric, Theorem 3.12 implies that there exists a countable dense subset ffkg of Ub.X ; d /
such that In.!/ H) � if

lim

n!1

Z
X
fk dIn.!/ D

Z
X
fk d� ; for every k 2 N: (39)
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Equation (38) implies that for each k 2 N there exists a null set Nk � � such thatR
X fk dIn.!/ !

R
X fk d� on Nk . Define N D

S
Nk , then P .N / D 0 and (39) holds

for every ! 2 � XN , which implies that In H) � almost surely on �.

�

3.5 Measurability and Continuity in theWeak- and
� -Topologies

In this section we go more into detail about the relationships between the �-topology and

the topology of weak convergence onM.X /. We write T� to denote the �-topology and Tw
to denote the topology of weak convergence. Since Cb.X / � B.X / , the definition of a

weak topology implies that T� is a stronger topology than Tw on M.X /, i.e.

Tw � T� :

Let .Y; TY/ be a topological space with Borel ��algebra BY . Some of the immediate con-

sequences of the fact that T� is stronger than Tw are:

1. If ˆ W Y ! M.X / is �-continuous, then it is weakly continuous.

2. If ‰ W M.X /! Y is weakly continuous, then it is �-continuous.

3. If K � M.X / is �-compact, then K is compact in the weak topology.

Hence there are more continuous maps from Y to M.X / in the weak topology than in the

�-topology, and conversely there are fewer continuous maps from M.X / to Y in the weak

topology than in the �-topology. An example of this is given by the maps x 7! ıx , which we

have seen are continuous maps whenM.X / is equipped with the weak topology, but in gen-
eral not continuous in the ��topology. The maps x 7! ıx may not even be measurable with

respect to the Borel �-algebra generated by the �-topology. Hence the empirical distribu-

tions are not measurable with respect to this �-algebra. The general solution to this problem

is to consider a smaller �-algebra on M.X /. Given f 2 B.X / we define ‰f W M.X /! R
to be the evaluation map

‰f .�/ WD hf; �i D

Z
X
f d� :

We will consider the �-algebra generated by evaluation maps ‰f .

Definition 3.12. We define the cylinder � -algebra on M.X / as

B‰ WD �
�
‰f W f 2 B.X /

�
: (40)

Let Bw denote the Borel �-algebra on M.X / equipped with the weak topology and B�

denote the Borel �-algebra onM.X /with the �-topology. This notation is not standard and

some authors refer to B‰ as the cylinder ��algebra which can be somewhat confusing,

considering that the term cylinder ��algebra is widely used when working with products

of measure spaces. The fact that the �-topology is stronger than the weak topology implies

that

Bw � B� :

The next Lemma shows that working with B‰ instead of B� can solve the measurability

issues that arise when working with B� , because the maps x 7! ıx are B‰-measurable.
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Lemma 3.9. The map x 7! ıx is B‰-measurable.

Proof. Since B‰ is generated by the maps ‰f it follows from Lemma A.2 that ' is B‰-

measurable if

'�1

0@ [
f 2B.X /

‰f
�1.BR/

1A � BX : (41)

Let ' W X ! M.X / be themap defined by x 7! ıx . For every f 2 B.X / it holds that
f D ‰f ı ':

By the measurability of f it follows that

'�1.M/ 2 BX ; for everyM 2 ‰f
�1.BR/:

Hence, the inclusion in equation (41) holds.

�

The measurability of the map x 7! ıx implies that the empirical distributions of the CMC

and IS estimators are B‰-measurable. Therefore, when studying the large deviations of a

sequence of measures onM1.X / equipped with the �-topology, the ��algebra B‰ is often

used. If the underlying spaceX has enough topological structure this is not very restricting.

In fact, in separable metric spaces it actually holds that B‰ D Bw . The following result

follows directly from [9, Proposition 7.25].

Lemma 3.10. Let X be a separable metrizable space, then B‰ D Bw on M.X /.
When X is a Polish space the above result is often attributed to [15, Lemma 2.1] in the large

deviations literature. However, it follows trivially from [9, Proposition 7.25] and the first

edition of [9] was published more than 10 years before [15].

3.6 Relative Entropy
In this section we introduce the relative entropy, also known as Kullback-Leibler divergence
(KL-divergence), which occurs as a rate function in the theory of large deviations. We will

make use of many of the results presented here in the next chapter. The relative entropy

is also widely used in information theory. We give the definition of relative entropy be-

low.

Definition 3.13. The relative entropy is a mapping R.�j�/ from M1.X / �M1.X / to Œ0;1�
defined as

R.�j�/ WD

(R
X log

�
d�
d�

�
d� D

R
X

d�
d�

log

�
d�
d�

�
d� ; if �� �;

1; otherwise:
(42)

The relative entropy can be thought of as a measure of the similarity of two probability

measures in M1.X /. However, the relative entropy is not a metric; it is trivial to see from

the definition of relative entropy that it is not symmetric with respect to its arguments. The

relative entropy has several very useful properties which may not be obvious from the defi-

nition. The following result gives a variational representation of the relative entropy and it

is known as the Donsker-Varadhan variational formula. The original result by Donsker and

Varadhan [26, Lemma 2.1] was proven for a smaller class of nonnegative bounded contin-

uous functions defined on a metric space. The version of the variational formula we state

here can be found in [30, Lemma 1.4.3 (a)].
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Theorem 3.18 (Donsker-Varadhan variational formula). Let X be a Polish space. Then, for
every �; � 2 M1.X /, it holds that

R.�j�/ D sup

g2Cb.X /

�Z
X
g d� � log

�Z
X
eg d�

��
D sup

g2B.X /

�Z
X
g d� � log

�Z
X
eg d�

��
In the next chapter, we will see that there are several criteria that good rate functions in the

theory of large deviations must satisfy. The next lemma, which was originally proven for

the relative entropy in [2] and extended to hold more generally in [24], shows that a large

class of functions on M.X / satisfy these properties. The term level set of a function will be

used frequently from now on, and we will use the following definition of a level set, also

known as a sublevel set.

Definition 3.14. Let X be a set and ' W X ! Œ0;1�, then the sets

fx 2 X W '.x/ � tg; t 2 Œ0;1�;

are said to be the level sets of '.

Lemma 3.11 ([24, Lemma 6.2.16]). Let ' W R ! Œ0;1� be a nonnegative convex lower
semicontinuous function with compact level sets that satisfies

j'.x/j

jxj
! 1; as jxj ! 1: (43)

If � 2 MC.X /, then the function I' W M.X /! R, defined by

I'.�/ WD

(R
X '

�
d�
d�

�
d� ; if �� �;

1; otherwise;

is a nonnegative lower semicontinuous function with compact level sets onM.X / equipped with
the � -topology.

The condition in equation (43)may seem strange, but is there to ensure uniform integrability.

The proof of Lemma 3.11 uses several deep results from functional analysis and we have

chosen to not include it here. The full proof can be found in [24, page 266]. Note that if

'.x/ D x log x, then I'.�/ D R.�j�/, and we get the following corollary of Lemma 3.11,

which we will use in the next chapter.

Corollary 3.2. Let � 2 M1.X /, then the function R.�j�/ is a nonnegative lower semicontin-
uous function with compact levels sets on M.X / equipped with the � -topology.
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4 Large Deviations Theory
This chapter is concerned with the study of the large deviation principle. The focus is on

large deviations results that can be applied to analyze the performance of the empirical

distributions of the CMC and IS estimator. We will introduce Cramér’s & Sanov’s Theorems

and version of Sanov’s Theorem that holds for the empirical distributions of the IS estimators

due to Hult & Nyquist [33]. The methods used and the exposition of this chapter is greatly

inspired by the book by Dembo & Zeitouni [24], the articles by de Acosta [2], [3], [1], and

the article by Hult & Nyquist [33].

The outline of this chapter is as follows. In section 4.1 we give the basic definitions related

to the theory of large deviations. This is followed by some existence and uniqueness result

in section 4.2, and sub-additivity techniques developed by Ruelle [46] and Lanford [38] are

introduced. In section 4.3 we show how large deviation principle can be moved between

spaces by different transformations. We state the contraction principle which motivates the

rate function in Sanov’s Theorem for the empirical distributions of the IS estimator. In sec-

tion 4.4 we prove Cramér’s Theorem in Polish spaces and this is combined in section 4.5

with projective systems to prove the classical version of Sanov’s Theorem in Polish spaces

and the space of measures equipped with �-topology. We end this chapter with some ex-

ample applications of how the large deviations principle can be applied to analyze the CMC

and the IS estimator.

4.1 Definition and Basic Properties
Definition 4.1. A function f W X ! Œ0;1� is said to be a rate function if it is lower

semicontinuous. Furthermore, if I is a rate function and the level sets

fx 2 X W f .x/ � tg

are compact for every t 2 Œ0;1� then I is said to be a good rate function.

Definition 4.2. Let X be a topological space, B be a �-algebra on X containing all open

sets, and I a rate function on X . Then a sequence of probability measures .�n/ is said to

satisfy the large deviation principle with rate function I if

� inf

U
I � lim inf

n!0

1

n
log Œ�n.U /� ; (44)

for every open U � X , and

� inf

C
I � lim sup

n!0

1

n
log Œ�n.C /� ; (45)

for every closed set C .

Equation (46) is referred to the large deviation lower bound and equation (47) is referred to as
the large deviation upper bound. In practice the full term large deviations principle is com-

monly replaced by the acronym LDP (see e.g. [25] or [24]). Note the similarity between the

the large deviations bounds and the third and fourth statement in the Portmanteau Theo-

rem. An equivalent formulation of the LDP that follows directly from the definition is given

below.
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Lemma 4.1. Let X be a topological space and I a rate function on X . Then a sequence of
probability measures .�n/ satisfies the large deviation principle with rate I if and only if the
following two equations hold for every A 2 BX ,

� inf

Ao
I � lim inf

n!1

1

n
log Œ�n.A/� ; (46)

� inf

A

I � lim sup

n!1

1

n
log Œ�n.A/� : (47)

Especially, if infAo I D infA I , then the limit

lim

n!1

1

n
log

�
�n.A/

�
exists.

Note that we assume that the Borel ��algebra on X is contained in the �-algebra B. It is

possible to use the formulation given in Lemma 4.1 to define the large deviation principle

when BX š B, but we will work under the assumption that BX � B and from now on

it is always assumed that this condition is met. If X is a regular topological space and a

sequence of probability measures satisfy a large deviation principle onX with rate function

I , then the sequence cannot satisfy the large deviation principle with another rate function

(see e.g. [24, Lemma 4.1.4]). If we replace the closed sets in the upper bound with compact

sets we get the definition of the weak large deviation principle.

Definition 4.3. Let X be a topological space and I a rate function on X . Then a family

of probability measures f�ng is said to satisfy a weak large deviation principle with rate

function I if it satisfies the lower bound (46) and

� inf

K
I � lim sup

n!1

1

n
log Œ�n.K/� (48)

for every compact set K � X .

It is generally much easier to prove the weak upper bound than the regular upper bound.

However, when .�n/ satisfy a weak large deviation principle then the rate function may not

be unique
9
. The strengthening of a weak large deviation principle to the full large deviation

principle is often achieved by showing that the sequence .�n/ is exponentially tight.

Definition 4.4. A sequence of probability measures .�n/ is exponentially tight if for every
˛ > 0 there exists a compact set K such that

lim sup

n!1

1

n
log

�
�n.X XK/

�
< �˛

If the sequence satisfy a weak large deviation principle and is exponentially tight, then the

following Lemma can be used to gain a full large deviation principle (see e.g. [25, Lemma

2.1.5] or [24, Lemma 1.2.18]).

Lemma 4.2. Let .�n/ satisfy a weak large deviation principle on X with rate I . If the se-
quence .�n/ is exponentially tight, then I is a good rate function and .�n/ satisfy the full
large deviation principle with rate I .

9
This explains the usage of the definite article the in conjunction with the full large deviation principle and the

usage of the indefinite article a in conjunction with the weak large deviation principle.
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We summarize the technique described above below.

It is a commonly used technique in large deviations to first that prove that .�n/ satisfy a weak
large deviation principle, and then show that .�n/ safisfy the full large deviation principle by
showing that the sequence .�n/ is exponentially tight.

Before we move on, it is worth noting that it is possible to work with arbitrary nets of mea-

sures instead of sequences. The most common alternative is to replace the sequence .�n/

with a net of measures indexed by "! 0. Then, the upper and lower bounds become

� inf

Ao
I � lim inf

"!0
" log Œ�".A/� ;

� inf

A

I � lim sup

"!0

" log Œ�".A/� :

We will only present large deviation results for sequences of measures in this chapter, but

much of the theory also holds for more arbitrary nets. Especially, apart from the subsection

on sub-additivity all of the theory in section 4.2 hold for when .�n/ is replaced by .�"/ (see

[24]). The same is true for the results in section 4.4 on transformations of large deviation

principles and projective systems.

4.2 Existence of a LDP
In this section we introduce two results which are useful for proving the existence of a

large deviation principle in topological spaces which can be found in chapter 4 of [24]. The

first result, Theorem 4.1, gives a criterion for the existence of a large deviation principle in

topological spaces based on the existence of large deviations limits over all basis elements.

The second result, Theorem 4.2, provides a criterion for the convexity of the rate function

in topological linear spaces.

Definition 4.5. We define the lower large deviation limit of a sequence .�n/ of probability
measures as the function L W B ! Œ0;1� defined by

L.A/ WD � lim inf

n!1

1

n
log

�
�n.A/

�
;

and the upper large deviation limit as

L.A/ WD � lim sup

n!1

1

n
log

�
�n.A/

�
;

If the two limits agree we say that L D L D L is the large deviation limit of �n. The name

upper and lower large deviation limit is non-standard and they are not to be confused with

the upper and lower large deviation bound.

Theorem 4.1 (Topological Existence Theorem [24, Thm 4.1.11]). Let X be a topological
space and U be a base for the topology on X and assume that BX � B. Define the upper and
lower rate functions taking values in Œ0;1� by

I .x/ WD supf L.B/ W B � U; x 2 Bg;

I .x/ WD supf L.B/ W B � U; x 2 Bg:
(49)

If I D I on X , then .�n/n satisfies a weak large deviation principle with rate function

I D I D I :
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Theorem 4.1 is very useful in combination with the following Lemma that can be used to

show that the rate function is convex. If one can show that the rate function is convex,

then tools from convex analysis may be used to identify the rate function with the limit

of the Legendre-Fenchel transform of the logarithmic moment generating function of the

measures �n. We will give such a result later in this section.

Theorem 4.2 ([24, Lemma 4.1.21 ]). Let X be a topological linear space and U be a base for
the topology on X and assume that BX � B. If I D I and L satisfy

L

�
B1 C B2

2

�
�
1

2

�
L.B1/C L.B2/

�
; for every B1; B2 2 U; (50)

then the rate function I is convex.

In order to utilize Theorem 4.1 one must show that the upper and lower rate functions agree

on the full space X , which is the case if

L.B/ D L.B/ D lim

n!1

1

n
log

�
�n.B/

�
;

for every B 2 U.T /. In the next section we show how sub-additivity can be used to prove

the existence of the limit above.

Sub-Additivity
Definition 4.6. A function f W N ! Œ0;1� is sub-additive if

f .mC n/ � f .m/C f .n/; for every m; n 2 N;

and super-additive if

f .m/C f .n/ � f .mC n/; for every m; n 2 N;

The following property of sub-additive functions follows directly from the definition.

Lemma 4.3. Let f be a sub-additive function and m; n 2 N , then

f .mn/ � mf .n/; and f .mn/ � nf .m/:

The main application of sub-additivity to the theory of large deviation is to prove the exis-

tence of the large deviation limit L. The usefulness comes from the following result which

can be found in [25, Lemma 3.1.3]
10
and [24, Lemma 6.1.11].

Lemma 4.4. Let f W N ! Œ0;1� be a sub-additive function. If there exists N 2 N such that
f .n/ <1 for every n � N , then

lim

n!1

f .n/

n
D inf

n�N

f .n/

n
<1:

Proof.Let f be sub-additive and n � m � N . Then we may express n as

n D n �m
�j n
m

k
� 1

�
Cm

�j n
m

k
� 1

�
:

10
The proof in [25] contains an error, but the general idea is correct.
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Therefore, by sub-additivity and Lemma 4.3 it follows that

f .n/ � f

�
n �m

�j n
m

k
� 1

��
C f .m/

�j n
m

k
� 1

�
:

The product of the second term satisfy the inequalities

1

m
�
2

n
�

n
m
.m � 2/

mn
�

�
n
m

˘
� 1

n
�
n �m

nm
D
1

m
�
1

n
:

And since m is fixed it follows that

lim

n!1

f .m/

n

�j n
m

k
� 1

�
D
f .m/

m
:

We shall now give a bound for the first term. We may express n as

n D m
j n
m

k
C r:

for some 0 � r < m, which shows that

m � n �m
�j n
m

k
� 1

�
� 2m � 1:

LetM WD maxff .k/ W m � k � 2m � 1g, then

f

�
n �m

�j n
m

k
� 1

��
�M;

Especially, we get that

lim sup

n!1

f .n/

n
�
f .m/

m
; for every m � N:

At the same time

lim inf

n!1

f .n/

n
D sup

k�1

inf

m�k

f .m/

m
� inf

m�N

f .m/

m
:

By combining the last two inequalities the Lemma follows.

�

Lemma 4.4 combined with Theorem 4.1 can be used to prove the existence of a large deviation
principle for a sequence, .�n/, of measures. If one can show that for every basis element, B ,
the function f .n/ WD � logŒ�n.B/� is sub-additive and bounded for n greater than some N 2
N , then Lemma 4.4 implies that L D L D L. Hence, the assumptions in Theorem 4.1 are
satisfied and the sequence of measure satisfy the large deviation principle. The application
of sub-additivity to the theory of large deviations was largely driven by its applications to
statistical mechanics and is generally attributed to Lanford [38] and Ruelle [46].

Convexity
We have introduced methods to prove the existence of a large deviation principle and The-

orem 4.1 gives an expression for the rate function as a supremum of the large deviation

limits. Furthermore, if X is a topological linear space and the conditions in Theorem 4.2

are satisfied, then this rate function is convex. Using tools from convex analysis it is many

cases possible to get a better representation for the rate function, and in this subsection
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we present some of the main results from this theory. This section is largely based on [24,

Section 4.5], and also [25, Chapter 2]. In the language of large deviations practitioners the

derivation of nicer expressions of I is called identification of the rate function. Throughout
this subsection X is assumed to be a Hausdorff locally convex topological linear space, and

we use X � to denote the topological dual space of X .

Definition 4.7. Let� 2 M1.X /, then we define the logarithmic moment generating function
of � to be the function ƒ� W X � ! .�1;1� given by

ƒ�.�/ WD log

�Z
X
eh�;xi d�.x/

�
:

Note that if X is an X -valued random variable with distribution �, then

ƒ�.�/ D logE
h
eh�;Xi:

i
When X is a real valued random variable we usually write ƒX .s/ in stead of ƒ�.�/, and

as the name suggests this is simply the logarithm of the moment generating function of

X :

ƒX .s/ D logMX .s/ D log

�Z
R
esx d�.x/

�
:

Lemma 4.5. For any� 2 M1.X / the functionƒ� is convex, and for fixed � 2 X � the function
ƒ�.�t/ W R! R is lower semicontinuous.

Proof. Let t 2 Œ0; 1� and �1; �2 2 X �, then

ƒ�.t�1 C .1 � t /�2/ D log

�Z
X
eht�1C.1�t/�2;xi d�.x/

�
D log

�Z
X
eth�1;xie.1�t/h�2;xi d�.x/

�
:

Hence, it follows fromHölder’s inequality, applied with Hölder conjugates 1=t and 1=.1�t /,

that

ƒ�.t�1 C .1 � t /�2/ � log

"�Z
X
eh�1;xi d�.x/

�t �Z
X
eh�1;xi d�.x/

�1�t#
D tƒ�.�1/C .1 � t /ƒ�.�2/:

Which shows thatƒ� is convex. Next, let t 2 R and .tn/ be a sequence that converges to t .

Then, it follows from the continuity of � that

lim

n!1
etnh�;xi D eth�;xi:

Thus, Fatou’s Lemma implies

ƒ�.�t/ D

Z
X
eth�;xi d�.x/ � lim inf

n!1

Z
X
etnh�;xi d�.x/ D lim inf

n!1
ƒ�.�tn/;

which proves that ƒ�.�t/ is lower semicontinuous with respect to t .

�
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The logarithmic moment generating play an important role in the theory of large deviations

as it is closely related to the rate function I . In the case of Cramér’s theorem, which we

state in the next section, the rate function is given by the Legendre-Fenchel transform of

the moment generating function.

Definition 4.8. Let f W X ! Œ�1;1�, then the Legendre-Fenchel transform11
of f is the

function f W X � ! Œ�1;1� defined by

f �.�/ D supfh�; xi � f .x/ W x 2 X g
D � infff .x/ � h�; xi W x 2 X g:

For many common distributions the logarithmic moment generating function exists and

is known. Furthermore, if X is a real valued random variable, then the Legendre-Fenchel

transform can be found by solving the continuous 1-dimensional optimization problem

ƒ�X .x/ D sup

s2R
fsx �ƒX .s/:g

This is easily solved by taking the derivative the logarithmic moment generating function

twice (see e.g. [7]).

Example 3. LetX be aN.�; �2/ real valued random variable, then the logarithmic moment

generating function of X is given by

ƒ.s/ D s� C
s2�2

2
:

The expression for the Legendre transform is given by

ƒ�.x/ D
.x � �/2

2�2
;

which is the exponent appearing in the probability density function of X scaled by �1.

Example 4. Let X be a Po.�/ random variable, then the logarithmic moment generating

function of X is given by

ƒ.s/ D �.es � 1/:

The expression for the Legendre transform is given by

ƒ�.x/ D � � x C x log
�x
�

�
There are two important results that play an essential role in identifying the rate function

as the Legendre-Fenchel transform of the logarithmic moment generating function. The

first is a well known result in the theory of large deviations from [52] which is known as

Varadhan’s Lemma. The version we present below can be found in [48, Theorem 2.1.10] and

[24, Theorem 4.3.1]

Theorem 4.3 (Varadhan’s Lemma). LetX be a regular topological space and .�n/ satisfy the
large deviation principle with good rate function I . If f 2 Cb.X / satisfies either

lim

M!1
lim sup

n!1

1

n
log

�Z
f�M

enf d�n

�
D �1; (51)

11
Also known as the convex conjugate of f or simply the Legendre transform of f .

51



or

lim sup

n!1

1

n
log

�Z
X
e˛nf d�n

�
<1; (52)

for some ˛ > 1, then

lim

n!1

1

n
log

�Z
X
enf d�n

�
D sup

x2X
ff .x/ � I.x/g: (53)

The right hand side of equation (53) is the the Legendre-Fenchel transform of I . Further-

more, since any � 2 X � is an element of Cb.X / we can apply Varadhan’s Lemma to the

function f .x/ D h�; xi. Then, we get the following corollary.

Corollary 4.1. Let X be a regular topological space and .�n/ satisfy the large deviation
principle with good rate function I . If � 2 X � and there exists ˛ > 1 such that

lim sup

n!1

1

n
log

�Z
X
e˛nh�;xi d�n

�
<1;

then

lim

n!1

1

n
log

�Z
X
enh�;xi d�n

�
D sup

x2X
fh�; xi � I.x/g D I �.x/: (54)

If the limit in equation (54) exists and is finite, then we define

ƒ.�/ WD lim

n!1

1

n
ƒ�n .n�/ D lim

n!1

1

n
log

�Z
X
enh�;xi d�n.x/

�
: (55)

Note, that ifƒ.�/ is finite for every � 2 X �, then we may considerƒ as a function fromX �
to R. The next theorem, which is a well known result from convex analysis can be applied

to ƒ to identify the rate function.

Theorem 4.4 (Biconjugate Theorem, see e.g. [8, Theorem 2.22]). Let f W X ! .�1;1�

not be identically1, then f D f �� if and only if f is convex and lower semicontinuous.

If I is a good convex rate function, then the biconjugate Theorem implies that I D I ��. If

the conditions of Varadhan’s Lemma hold for every � 2 X �, then it follows from Corollary

4.1 that I �� D ƒ�. This proves the following theorem.

Theorem 4.5. Let X be a regular topological space and .�n/ satisfy the large deviation prin-
ciple with good convex rate function I . If ƒ.�/ exists and is finite for every � 2 X �, then

I.x/ D ƒ�.x/:

There are many variations and results which are similar to Theorem 4.5 and that can be

used to identify the rate function with ƒ� under different conditions. However, the main

idea underlying these results is the variational formula given in Varadhan’s Lemma and

the biconjugate Theorem. The next theorem, which we state without proof, can be used to

identify the rate function associated with a weak large deviation principle. We will use this

to identify the rate function in Cramér’s Theorem.

Theorem 4.6 ([24, Theorem 4.5.14]). Let .�n/ satisfy a weak large deviation principle with
convex rate function I on X , and the limits

ƒt .�/ WD lim

n!1

1

n
ƒ�n.�nt/ 2 Œ�1;1�
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exist for every � 2 X � and are lower semicontinuous on R with respect to t . If it holds for
every � 2 X � and ˛ 2 R that

inffI.x/ W x 2 X ; h�; xi � ˛ > 0g � inf

s>˛
ƒ��.s/; (56)

then
I.x/ D ƒ�.x/:

4.3 Cramér’s Theorem
In this section we present one of the most well known results from the theory of large

deviations Cramér’s Theorem. We will prove a general version of Cramér’s Theorem for

random variables taking values in Polish spaces. Given a sequence .Xi / of i.i.d. real valued

random variables, we can form the empirical means

Sn WD
1

n

nX
iD1

Xi :

The strong law of large numbers implies that Sn ! EŒXi � almost surely if the expected value

of the random variables Xi is finite. The classical version Cramér’s Theorem establishes a

large deviation principle for the distributions of the randomvariables Sn based on the criteria
that the random variables have finite moment generating functions.

Theorem 4.7 (Cramér’s Theorem). Let .Xi / be a sequence of i.i.d. real valued random vari-
ables with distribution �, and let �n denote the distribution of the empirical mean Sn. If
MX .s/ < 1 for every s 2 R, then the sequence .�n/ satisfies the large deviation principle
with rate function

I D ƒ�X .x/ D sup

s2R
fsx �ƒX .s/g:

Furthermore, for every ˛ 2 R it holds that

lim

n!1

1

n
log

�
�nŒ˛;1/

�
D � inf

s�˛
ƒ�.s/:

Cramér’s Theorem can be extended to Rd for any d 2 N and to more general (even infinite-

dimensional) topological linear spaces. The main goal of this section is to prove a version

of Cramér’s Theorem that holds under the following assumption.

Assumption 1. The spaceX is a locally convex Hausdorff topological linear space and E � X
a closed convex subset satisfying

1. �.E/ D 1.

2. E is Polish in the subspace topology.

Throughout this section we assume that the criteria in Assumption 1 are satisfied.

Assumption 1 is equivalent to part (a) of [24, Assumption 6.1.2], however we drop part (b)

of [24, Assumption 6.1.2]: coK is compact whenever K � E is compact. The reason for

dropping part (b) is that in a completely metrizable locally convex space this always holds

by Theorem A.9 (see [5, Thm 5.35]). Therefore part (b) of Assumption 6.1.2. in [24] is

redundant as it follows from part (a).
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Empirical Means in Topological Linear Spaces
Consider a sequence .Xi / if i.i.d. random variables with distribution� defined on .�;F ;P /
taking values in the topological linear spaceX . In this section we study the large deviations

of the distribution of the empirical means Sn W �! X , defined by

Sn.!/ D
1

n

nX
iD1

Xi .!/:

The distribution of the empirical mean is given by�n D P ıSn�1. Now consider the random

vector Xn W �! X n
defined by

Xn D .X1; � � � ; Xn/;

which is a random variable with distribution �n D �˝ � � � ˝� on

�
X n;Bn.X /

�
. Then we

may express the empirical means as Sn D Sn ıXn, where Sn W X n ! X is the map defined

by

Sn.x/ D
1

n

nX
iD1

xi :

Since X is a topological linear space it follows that the map Sn W X n ! X is continuous

and therefore it is Borel-measurable. Thus, by Lemma A.7 it follows that the distribution

�n of Sn equals the distribution of the random variable Sn, i.e.

�n D P ı Sn�1 D �n ı Sn�1;

and we will use both representations. A useful property of the empirical means is that it is

possible to express them as convex combinations on the form

SmCn D
m

mC n
Sm C

n

mC n

1

n

mCnX
iDmC1

Xi :

This type of decompositionwill be used often and thereforewe introduce the notation

Smk WD
1

k �m

kX
iDmC1

Xi ;

using this we can rewrite the previous equation as

SmCn D
m

mC n
Sm C

n

mC n
SmmCn: (57)

Subadditivity of �n
Lemma 4.6. Let A � E be Borel measurable and convex and m; n 2 N , then

�m.A/�n.A/ � �mCn.A/:

Proof. LetA � E be a Borel-measurable convex set. For anym; n 2 N , equation (57) shows

that we may express SmCn as a convex combination of Sm and SmmCn. The set A is convex,

thus if

y 2 Sm�1.A/ \ SmmCn
�1
.A/;
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then it follows from the convexity of A and equation (57) that

SmCn
�
Sm�1.A/ \ SmmCn

�1
.A/

�
� A:

Which shows that

fSm 2 Ag \ fSmmCn 2 Ag � fSmCn 2 Ag: (58)

Since the random variables Xi are independent, it follows that Sm and SmmCn are indepen-

dent, and that

P
�
fSm 2 Ag \ fSmmCn 2 Ag

�
D P

�
Sm 2 A

�
P
�
SmmCn 2 A

�
D �m.Sm 2 A/�

n.Sn 2 A/

D �m.A/�n.A/:

Combining this with equation (58) yields the inequality

�m.A/�n.A/ � P .SmCn 2 A/ D �mCn.A/:

�

Corollary 4.2. Let A � E be Borel measurable and convex, then the function

f .n/ WD � log

�
�n.A/

�
is sub-additive.

Proof. The measures �n are probability measures, hence 0 � �n.A/ � 1 for every n 2 N .

Using Lemma 4.6 and taking logarithms on both sides yields, the inquality

0 � � log

�
�m.A/

�
� log

�
�n.A/

�
� � log

�
�mCn.A/

�
:

Which shows that f .n/ D � log

�
�n.A/

�
is sub-additive.

�

We have showed that .�n/ are sub-additive, but in order to apply Lemma 4.4 we must show

the following Lemma.

Lemma 4.7. Let A � E be open and assume that there exists m 2 N such that �m.A/ > 0.
Then there exists N 2 N such that

�n.A/ > 0; for everyIn � N:

Proof. Let �m.A/ > 0. We are going to show that there exists a point z 2 A such that

all open neighborhoods of z have positive �m-measure. Assume for contradiction that no

such point exists, then there exists an open neighborhood Ux of every point in A such that

�m.Ux/ D 0. Since the topology on E is metrizable it follows from Urysohn’s Metrization

Theorem that it is second countable, hence Lindelöf
12
. Thus, every open cover of A has

a countable subcover, which means that there exists a countable subcollection fUxi g that

covers A. Hence,

0 < �m.A/ � �
h[

Uxi

i
�

X
�m.Uxi /;

which implies that �m.Uxi / > 0 for some i 2 N which is a contradiction.

12
A topological space is Lindelöf if every open cover has a countable subcover.
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Now, let z 2 A be a point satisfying �m.U / > 0 for every open neighborhood and consider

the function f W Œ0; 1� � E � E ! E defined by

f .t; x; y/ D tx C .1 � t /y:

Since X is a topological linear space and E inherits its topology from X it follows that the

function f is continuous with respect to the product topology on Œ0; 1� � E � E . Further-
more,

f .0; z; y/ D z 2 A; for every y 2 E ;
and the continuity of f implies that f �1.A/ is open. Hence, for every y 2 E there exists

an open neighborhood Œ0; "y/ � Uy � Vy of .0; z; y/ such that

f
�
Œ0; "y/ � Uy � Vy

�
D .1 � t /Uy C tVy � A; for every t 2 Œ0; "y/: (59)

The sets fVygy2K form an open cover of K , which is compact thus, there exists a finite

subcover of K . Let fVyi g
n
iD1 be a finite subcover and define

U WD

n\
iD1

Uyi ; " WD min

1�i�n
"yi :

Then U is an open set, and by equation (59) it follows that

.1 � t /U C tK � A; for every t 2 Œ0; "/:

Since X is a locally convex space there is a basis consisting of open convex sets, thus we

may find an open and convex subset C � X such that z 2 C � U and

.1 � t /C C tK � A; for every t 2 Œ0; "/: (60)

Hence,

�n
�
.1 � t /C C tK

�
� �n.A/; for every t 2 Œ0; "/: (61)

Let N D
˙
1
"

�
and n � N , then there exists q; r 2 N such that 1 � r � m and n D mqC r .

Note that the decomposition always leaves the term r nonzero, which we will use later.

Furthermore we can decompose Sn as

Sn D
1

n

�
mqSmq C rSmqn

�
D
1

n

�
.n � r/Smq C rSmqn

�
D

�
1 �

r

n

�
Smq C

r

n
Smqn :

Then r=n < " and˚
Smq 2 C

	
\
˚
Smqn 2 K

	
�

n
Sn 2

�
1 �

r

n

�
C C

r

n
K
o
:

Thus, it follows from the independence of Smq and Smqn that

�mq.C /�r .K/ � �n

�
Sn
�
1 �

r

n

�
C C

r

n
K
�
;

which combined with equation (61) yields the inequality

�mq.C /�r .K/ � �n.A/: (62)
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Thus, all it remains to show is that both factors on the left-hand side of equation (62)

are nonzero. Consider the finite collection f�1; : : : ; �mg � M1.X /. Any finite collec-

tion in a topological space is compact and thus Prokhorov’s Theorem (3.15) implies that

f�1; : : : ; �mg is tight, i.e. there exists a compact set K � E such that

�i .K/ > 0; i D 1; : : : ; m: (63)

Since, 1 � r � m it follows from equation (63) that �r .K/ > 0. Next, note that C is an

open convex subset of A, and therefore Lemma 4.6 implies that �mq.C / � �m.C /
q
.

Finally, C is a neighborhood of z, hence of positive �m-measure, which shows that

0 < �m.C /
q�r .K/ � �n.A/:

�

Cramér’s Theorem in Polish spaces
We are now ready to prove that the empirical means satisfy a weak large deviation principle,

and that a version of Cramér’s Theorem also holds under Assumption 1.

Lemma 4.8 ([24, Lemma 6.1.7 & 6.1.8]). The sequence .�n/ of distributions of the empirical
means satisfy a weak large deviation principle with a convex rate function I satisfying

lim

n!1

1

n
log�n.A/ D � inf

x2A
I.x/; (64)

for every convex and open A � X .

Proof. The space X is a locally convex topological linear space and therefore there exists a

basis C consisting of open convex subsets. Let A 2 C , then A \ E is convex and

�n.A/ D �n.A \ E/; for every n 2 N;

since �n.E/ D �n.X / D 1 for every n, Hence, we may without loss of generality assume

that A � E is convex and open. Now, we are going to show that the limit L.A/ exists

for every basis element. If �n.A/ D 0 for every n 2 N , then L.A/ D 1, and the limit

trivially exists. Otherwise, there exists m 2 N such that �m.A/ > 0 and by Lemma 4.7 it

follows that �n.A/ satisfy the assumptions of Lemma 4.6. Hence, Corollary 4.2 implies that

f .n/ D � logŒ�n.A/� is sub-additive, and therefore by Lemma 4.4 the limit L.A/ exists and

is given by

L.A/ D lim

n!1
�
1

n
log

�
�n.A/

�
D � sup

n�N

1

n
log

�
�n.A/

�
:

Thus, L.A/ exists for every A 2 C , and the topological basis existence theorem, Theorem

4.1, yields the existence of a weak large deviation principle for .�n/ with rate function I

given by

I.x/ WD supfL.A/ W x 2 A; A 2 Cg:

Next we show that the rate function I is convex. In order to apply Theorem 4.2 we must

prove that L satisfies the condition

L

�
A1 C A2

2

�
�
1

2

�
L.A1/C L.A2/

�
; for every A1; A2 2 C : (65)
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Let A1; A2 2 C , and assume without loss of generality that A1; A2 � E . Note that we may

decompose S2n as
1

2

�
Sn C Sn2n

�
D S2n:

By convexity it follows that˚
Sn 2 A1

	
\
˚
Sn2n 2 A2

	
�

�
S2n 2

A1 C A2

2

�
;

and by the independence of Sn and Sn2n combined with the inclusion above we get the in-

equality

�n.A1/�n.A2/ � �2n

�
A1 C A2

2

�
:

Taking logarithms on both sides yields

log

�
�n.A1/

�
log

�
�n.A2/

�
� log

�
�2n

�
A1 C A2

2

��
� 0:

Bymultiplying both sides by�1 and taking limits as n!1 shows that equation (65) holds.

The convexity of I now follows from Theorem 4.2.

We will now prove that the identity in equation (64) holds for every open and convex set

A � X . Without loss of generality we may assume that A � E . If L.A/ D 1, then (64)

trivially holds, otherwise if L.A/ <1 then

L.A/ D � lim

n!1

1

n
log�n.A/ � inf

x2A
I.x/ (66)

by the large deviation principle lower bound. We will now show that the reverse inequality

also holds. Let " > 0, then it follows from (66) that there exists N 2 N such that

�
1

n
log Œ�n.A/� < L.A/C "; for every n � N:

Since X is Polish it follows from Ulam’s Theorem that every finite measure is tight. Hence

for any ı > 0 there exists a compact set K � A such that

�N .A nK/ < ı:

Choose ı D .1 � e�"/�N .A/, then

e�"�N .A/ D �N .A/ � ı < �N .K/;

and

� log

�
�N .K/

�
< � log

�
�N .A/

�
C ":

Which shows that

� log

�
�N .K/

�
< � log

�
�N .A/

�
C " < L.A/C 2": (67)

Thus the identity (64) holds for compact sets. We will now show that it holds for arbitrary

convex open sets A � X . The space E is metrizable and therefore regular by Urysohn’s

metrization theorem, which implies that for every x 2 A there exists an open set Ux with

x 2 Ux and Ux � A. Furthermore, since E is locally convex the sets Ux can be taken to
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be convex. Since K is compact it may be covered by a finite subcollection fUig
k
iD1 of these

sets. Define

QK D

k[
iD1

�
U i \ co.K/

�
;

and note that QK � co.K/ is a union of compact sets (since co.K/ is compact whenever

K is compact in completely metrizable locally convex space). Let C D co. QK/, then C is a

compact, closed, and convex subset of E that satisfies the set inclusion

K � C � co.K/ � A:

Therefore

� log

�
�n.A/

�
� � log

�
�N .C /

�
� � log

�
�N .K/

�
< L.A/C 2":

SinceC is convex and closed it follows fromCorollary 4.2 and the properties of subadditivity

that

lim sup

n!1

1

n
log

�
�n.C /

�
D lim inf

n!1
�
1

n
log

�
�n.C /

�
D lim inf

n!1
�
N

nN
log

�
�n.C /

�
� lim inf

n!1
�
1

nN
log

�
�nN .C /

�
� lim

n!1
�
1

N
log

�
�N .C /

�
D �

1

N
log

�
�N .C /

�
< L.A/C 2":

(68)

And since C is compact and C � A the large deviation upper bound gives

inf

x2A
I.x/ � inf

x2C
� � lim sup

n!1

1

n
log

�
�n.C /

�
< L.A/C 2":

Since this holds for every " > 0 it follows that

inf

x2A
I.x/ � L.A/;

Combined with equation (66) this shows that

lim

n!1

1

n
log

�
�n.A/

�
D � inf

x2A
I.x/:

�

We are now going to show that the rate function is given by the Legendre-Fenchel transform

of the moment logarithmic moment generating, just as in the one-dimensional case.

Theorem 4.8 (Weak Cramér’s Theorem). The sequence .�n/ of distributions of the empirical
means satisfy a weak large deviation principle with a convex rate function I D ƒ�, and

lim

n!1

1

n
log�n.A/ D � inf

x2A
ƒ�.x/; (69)

for every convex and open A � X .

Proof. It follows from the previous Lemma that .�n/ satisfy a weak large deviation prin-

ciple with convex rate function I . We are now going to use Theorem 4.6 to identify the
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rate function. We start by noting that since the variables Xi are independent it follows

that

1

n
ƒ�n.�nt/ D

1

n
logE

h
enth�;Sni

i
D
1

n
logE

h
et.h�;X1iC���Ch�;Xni/

i
D
1

n
log

�
E
h
eth�;X1i

i
� � �E

h
eth�;Xni

i�
D
1

n
log

�Z
X
eh�;xi d�

�
D ƒ�.�t/:

Hence,

ƒ�.t/ D lim

n!1

1

n
ƒ�n.�nt/ D ƒ�.�t/;

and the limit exists for every � 2 X � and t 2 R. Furthermore, it follows from Lemma 4.5

that ƒ�.t/ is lower semicontinuous. It remains to show that the inequality in equation (56)

is satisfied, i.e. that

inffI.x/ W x 2 X ; h�; xi � ˛ > 0g � inf

s>˛
ƒ��.s/

Since every element � 2 X � is bounded it holds that the random variables h�; Sni are
bounded. Furthermore, by linearity of � we get that

h�; Sni D
1

n

nX
iD1

h�;Xi i:

This is the empirical mean of a sum of i.i.d. bounded real valued random variables and

therefore the logarithmic moment generating functions of h�;Xi i are finite and Cramér’s

Theorem for real valued random variables holds. Especially, we get that

lim

n!1

1

n
P
�
h�; Sni 2 Œ˛;1/

�
D lim

n!1

1

n
log

�
�nfx W h�; xi � ˛ � 0g

�
D � inf

s�˛
ƒ��.s/: (70)

Note that level sets fx W h�; xi � ˛ > 0g are convex and open subsets of X , thus by Lemma

4.8 it holds that

lim

n!1

1

n
log�n

�
fx W h�; xi � ˛ > 0g

�
D � inffI.x/ W h�; xi � ˛ > 0g: (71)

And since fx W h�; xi � ˛ > 0g � fx W h�; xi � ˛ � 0g we get that

log�n
�
fx W h�; xi � ˛ > 0g

�
� log�n

�
fx W h�; xi � ˛ � 0g

�
;

which combined with equation (70) and equation (71) yields the inequality

� inf

s>˛
ƒ��.s/ � � inffI.x/ W x 2 X ; h�; xi � ˛ > 0g:

This is equivalent to the condition on the rate function in Theorem 4.6, and it follows that

.�n/ satisfy a weak large deviation principle with rate ƒ��.

�

Even if Theorem 4.8 can be applied in much more general spaces than Cramér’s Theorem

in R it only proves that .�n/ satisfy a weak large deviation principle. However, by Lemma
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4.2, the full large deviation principle can be attained by showing that the sequence .�n/ is

exponentially tight. This the case for the distributions of the empirical means in Rd if the

logarithmic moment generating function is bounded (see e.g. [24, pp. 38–39]. Thus, by an

application of Lemma 4.2 we get the following corollary of the Weak version of Cramér’s

Theorem.

Corollary 4.3 (Cramér’s Theorem in Rd ). Let .Xi / be a sequence of i.i.d. real valued random
variables with finite logarithmic moment generating functions. Then the distributions .�n/ of
the empirical means .Sn/ satisfy the large deviation principle with good rate function ƒ��.

4.4 Transformations and Large Deviations
A natural question to ask is how the large deviation principle behaves under transforma-

tions. When f W X ! Y is a continuous map and .�n/ satisfy a large deviation principle

on X , then it can be shown that a large deviation principle also holds on Y .

Theorem 4.9 (Contraction Principle). LetX ;Y be Hausdorff topological space and f W X !
Y be continuous. If I is a good rate function on X , then J defined by

J.y/ WD inffI.x/ W x 2 X ; f .x/ D yg;

is a good rate function on Y . Furthermore if .�n/ satisfy the large deviation principle with rate
I on X , then .�n ı f �1/ satisfy the large deviation principle on Y with rate J .

The contraction principle can be very useful to derive new large deviations from existing

ones and we will see an example of this later when we introduce Sanov’s Theorem for the

empirical distributions of the IS estimator. Even when the map f is not continuous the con-

traction provides a good guess for how the rate function might look on Y if it exists.

Another very useful tool that can be used to transform existing large deviations results to

new spaces is based on projective limits.
13

We start with the definition of projective limits

of topological spaces and some of their basic properties which can be found in [16, §4.4] and

[24, Appendix B.1].

Definition 4.9. Let .X˛; T˛/˛2I a collection of topological spaces indexed over a partially

ordered set I , and .p˛ˇ /˛;ˇ2I a collection of maps satisfying

1. p˛ˇ W Xˇ ! X˛ .

2. p˛ D p˛ˇ ı pˇ if ˛ � ˇ �  .

Then .X˛; p˛ˇ / is called a projective system.

Definition 4.10. Let .X˛; p˛ˇ / be a projective system, then the projective limit of .X˛/ is
the space

lim

 �
X˛ WD

n
x 2

Y
X˛ W x˛ D p˛ˇ .xˇ / for every ˛ � ˇ

o
;

equipped with subspace topology inherited from the product space

QX˛ .
The following theorem summarizes some important facts about projective limits.

Theorem 4.10 ([16, §4.4 Proposition 9]). Let .X˛; p˛ˇ / be a projective system, then

13
Projective limits are also known as inverse limits (see e.g. [16]) but in the large deviations literature the term

projective limit is most commonly used.
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1. The restriction of the projection maps p˛ W
QX˛ ! X to lim

 �
X are continuous maps.

2. If for every ˛ 2 I there is basis, U˛ , of X˛ , then the collection

U D fp�1˛ .B˛/ W ˛ 2 I; B˛ 2 U˛g

is a basis for the topology on lim

 �
X .

3. If X˛ are all Hausdorff, then lim

 �
X is a closed subset of

QX˛ (thus Hausdorff).

4. If A �
QX˛ is closed, then

A D lim

 �
p˛.A/ D lim

 �
p˛.A/:

The usefulness of projective limits to theory of large deviations is that large deviations re-

sults can be transformed from the spaces X˛ to the projective limit lim

 �
X˛ . One of the main

advantages of the projective limits methods is that it is possible to go from finite dimensional

large deviation principles to an infinite-dimensional large deviation principle. Dawson and

Gärtner introduced the method of projective limits in [23]. These ideas have been expanded

upon by de Acosta in [3] and [1]. One major difference in de Acosta’s work is that he shows

that it possible drop the assumption that X is the projective limit of the projective system.

Instead, the following assumption is used in [3] and [1].

Assumption 2. Assume that .X˛; p˛ˇ / is a projective system and that there exists a set X
and a collection of maps fp˛g that satisfy:

1. p˛ W X ! X˛ are surjective maps.

2. p˛ D p˛ˇ ı pˇ for every ˛ � ˇ.

3. The collection fp˛g separates points in X .

Further assume that X is equipped with the weak topology generated by the maps fp˛g, and
that B is a � -algebra of subsets of X that satisfy:

1. Every compact subset of X is in B.

2. There exists a basis U � B for the topology on X .

Note that since the collection fp˛g is separating it follows that X is a Hausdorff topological

space in the weak topology generated by fp˛g.

Theorem 4.11 ([3, Theorem 4]). Let X ,.X˛; p˛ˇ / and B D �.p˛/ satisfy assumption 2 and
.�n/ be a sequence of probability measures on .X ;B/. If

1.
�
�n ı p˛

�1
�
satisfy the large deviation principle on X˛ with rate function I˛ for every

˛, and

2. there exists a function I W X ! Œ0;1� such that fI �M g is compact for everyM � 0
and

I˛.z/ D inffI.x/ W z D p˛.x/g:

Then .�n/ satisfy the large deviation principle on X with rate I . Furthermore, I is a good rate
function and

I.x/ D sup

˛

˚
I˛
�
p˛.x/

�	
:
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Theorem 4.11 may seem very abstract, but it is a very powerful tool that lets us lift large

deviation principles from lower dimensions to higher dimensions. The general idea for

us will be the following. We are interested in the large deviations of the distributions

.�n/ 2 M1

�
M1.X /

�
of either the empirical distributions Ln or In. Then we can use Cramér’s

Theorem for large deviations in the finite dimensional spaces Rd and by defining a suitable

projective system show that that the measures .�n/ also satisfy a large system principle,

and we will show how this can be done in the next section.

4.5 Sanov’s Theorem
In this section we study the large deviations of the empirical distributions. Sanov’s Theo-

rem asserts that Ln satisfy a large deviation principle and just like in the case of Cramér’s

Theorem there are many variations of Sanov’s Theorem.

Sanov’s Theorem in the Topology of Weak Convergence
Let X be a Polish space, then we know from Theorem 3.14 that M1.X / is Polish. Further-
more, if .Xi / is a sequence of i.i.d. X -valued random variables with distribution� 2 M1.X /.
Then the random variables ıXi are Bw -measurable by Lemma 3.10 and Lemma 3.9. Since

the space M.X / is a is a topological linear space in the topology of weak convergence it

follows that the empirical distributions

Ln D
1

n

nX
iD1

ıXi

are Bw -measurable. Let � denote the distribution of the random variables ıXi , and note

that

�
�
M1.X /

�
D P

�
ıXi 2 M1.X /

�
D 1:

Thus, the conditions of Assumption 1 are satisfied and theWeak Cramér’s Theorem in Polish

spaces (Theorem 4.8) can be applied to the distributions .�n/ of .Ln/. This shows that .�n/
satisfy a weak large deviation principle onM1.X /. We state this as a Lemma below.

Lemma 4.9. The distributions .�n/ of .Ln/ satisfy a weak large deviation principle onM.X /
with convex rate function

I.�/ D ƒ��.�/ D sup

f 2Cb.X /
fhf; �i �ƒ�.f /g:

Note that

ƒ.f / D sup

f 2Cb.X /

˚
hf; �i �ƒ�.f /

	
D sup

f 2Cb.X /

n
hf; �i � logE

�
ehf;ıXi i

�o
D sup

f 2Cb.X /

n
hf; �i � logE

�
ef .Xi /

�o
D sup

f 2Cb.X /

�
hf; �i � log

�Z
X
ef d�

��
;

where the supremum is taken over Cb.X /. The reason for this is that Cb.X / is separating
and hf; �i is linear on M.X /, hence, the topological dual of M.X / in the weak topology is

Cb.X /.
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A full large deviation principle can be achieved by showing that the distributions .�n/ are

exponentially tight. This is a well-known result which we state below. A proof can be found

in [24, Lemma 6.2.6].

Lemma 4.10. The sequence of distributions .�n/ of the empirical distributions .Ln/ are ex-
ponentially tight.

The final component that will be used in the proof of Sanov’s Theorem is the identification

of the rate functionƒ�� with the relative entropy. The following lemma can be found in [25,

Lemma 3.2.12]

Lemma 4.11. Let � be the distribution of ıXi , then

R.�j�/ D ƒ��.�/:

Theorem 4.12 (Sanov’s Theorem). Let X be a Polish space and Xi a sequence of X -valued
random variables with distribution�. Then the distributions .�n/ of the empirical distributions
.Ln/ satisfy the large deviations principle with good rate function I.�/ D R.�j�/.

Proof. By Lemma 4.9 the distributions .�n/ satisfy a weak large deviation principle with

convex rate function I.�/ D ƒ�.�/. Next, we use the fact that the distributions .�n/ are

exponentially tight (Lemma 4.10), hence, by Lemma 4.2, they satisfy the full large deviation

principle with rate I . Finally, by Lemma 4.11, the rate functions equals R.�j�/.

�

Sanov’s Theorem in the � -topology
Sanov’s Theorem also holds on .M1.X /;B‰/ and then the condition that X is Polish can be

dropped. In [2], it is showed that Sanov’s theorem holds in the �-topology whenever X is a

measurable space and theXi ’s areX -valued random variables. In what follows we show the

main ideas from [2] and how they can be used to derive Sanov’s Theorem in the �-topology

when combined with the projective limits results from earlier. The main idea is to define a

projective system such that �n ıp˛
�1

satisfy a finite-dimensional large deviation principle

and then apply Theorem 4.11 to get the large deviation principle of .�n/ inM1.X /.
Let F be the collection of all finite subsets of B.X /. Then F is a directed set when ordered

by inclusion, and we can define the projective system

�
RF ; .…FG/F;G2F

�
. When F � G

the map…FG W RG ! RF is defined to take a function ˆ W G ! R to its restriction on F ,

i.e.

…FG.ˆ/ WD ˆjF :

Next, for each F 2 F we define the the projections…F W M.X / 7! RF as

…F .�/ WD ˆ� jF ;

where ˆ� jF 2 RF , denotes the restriction to F of the map ˆ� W B.X / ! R, given

by

ˆ�.f / D

Z
X
f d� :

It can be shown that the weak topology induced by the maps f…F gF 2F is equivalent to

weak topology generated by ‰f (i.e. the �-topology).
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Now, consider the distributions of the projection maps �n ı…F
�1
D P ı Ln�1 ı…F

�1
on

RF . By definition, �n ı…F
�1

is the distribution of the random variables Sn W � ! RF

given by Sn D …F ı Ln. Furthermore, we can express Sn as

Sn D
1

n

nX
jD1

Fj ; Fj D ˆıXj jF :

The functions Fj W �! RF are random variables. Hence, Sn can be considered as themean

of collection of random variable of RF -valued random variables. Furthermore, any finite

dimensional real linear space is linearly isometric toRd , where the d is the dimension of the

linear space. Hence Cramér’s Theorem in Rd (Corollary 4.3) implies that the distributions

of Sn satisfy the large deviation principle, and the rate function is given by

IF .z/ D sup

w2RF

8<: nX
f 2F

z.f /w.f / � log

�Z
X
e
Pn
f2F z.f /f .x/ d�.x/

�9=; :
This shows that the first condition of Theorem 4.11 is satisfied. Part of the second condition

is covered by the following lemma from [2].

Lemma 4.12 ([2, Lemma 2.2]). The rate function IF W RF ! Œ0;1� satisfies

IF .z/ D inf fR.�j�/ W z D …F .�/g :

In light of this result, all conditions of Theorem 4.11 are satisfied if the relative entropy has

compact level sets in the �-topology, which we know is true (see Corollary 3.2). Thus, the

following version of Sanov’s Theorem follows.

Theorem 4.13 (Sanov’s Theorem in the �-topology). Let X be a measurable space and .Xi /
a sequence of X -valued random variables with distribution �. Then the distributions .�n/ of
the empirical distributions .Ln/ satisfy the large deviations principle on .M1.X /;B‰/ with
good rate function I.�/ D R.�j�/.

Sanov’s Theorem can be used to analyze the convergence rate of empirical distributions

of the CMC-estimator and we will show examples of this in the next chapter. However,

it cannot be applied directly to analyze the convergence rate to the IS estimator. Using

the weak convergence approach to large deviations Hult and Nyquist proved in [33] that

the empirical measures of the IS estimator with importance function f satisfy a Laplace

principle.

Theorem 4.14 (Hult & Nyquist [33]). LetX; Y be X valued random variables with distribu-
tions �� � , and f W X ! Œ0;1/. If there exists a function U W X ! Œ0;1� satisfying

1.
R
X e

U
d� <1, and

2.
R
X e

tf .x/�.x/
d� <1, for every t > 0.

Then the sequence In.f / satisfy the Laplace principle:

lim

n!1

1

n
logE

h
e�nˆ.In.f //

i
D � inf

�2MC.X /
fˆ.�/C I.�/g; for every ˆ 2 Cb

�
MC.X /

�
;

with rate function

I.�/ D inf

˚
R.�; �/ W � 2 M1.X /; R.�; �/ <1; � D

R
Xf w d�

	
;

in the � -topology.
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4.6 Applications to Monte Carlo Estimators
We are now going to look at how the large deviation principle can be applied to estimate

the sample size required in CMC. Let us start by considering the case where we want the

CMC estimator to achieve relative precision " with confidence level 1 � ˛, i.e.

P
�
j�n � � j < "j� j

�
> 1 � ˛: (72)

We write

R" WD B .�; "j� j/ ;

to denote the open balls in R corresponding to the relative precision ". Let A" D Rc
", then

the identity in equation (72) is equivalent to

P .�n 2 A"/ � ˛:

Let �n denote the distribution of the CMC estimator �n. We want to find n 2 N such that

the �n.A"/ � ˛. Assume that the sequence of measures .�n/ satisfies a large deviation

principle with rate function I . Then, since the sets A" are open, the large deviation upper

bound would imply that

lim sup

n!0

1

n
log Œ�n.A"/� � � inf

A"
I:

For large n we can interpret this as

�n.A"/ / e�nI.A"/:

Thus, to achieve the desired precision with confidence 1 � ˛ we want

e�nI.A"/ � ˛:

Note that I � 0 and ˛ 2 .0; 1/, thus by taking logarithms of both sides we get

nI.A"/ � log.˛/

Rearranging we get the identity

n '
log.˛/

I.A"/
: (73)

Example 5. Consider the case when want to compute � D EŒX� for X � N.�; �2/. Then
the rate function is given by

I.x/ D
.x � �/2

2�2
:

and

I.A"/ D inffI.x/ W jx � � j > "j� jg D
"2�2

2�2

Thus, by equation (73), we want

n '
log.˛/2�2

"2�2
:

Note that this is very similar to the bound we derived in equation (12) in chapter 2, where

we derived the following estimate from the confidence intervals of the CMC-estimator.

n '
z2
1�˛=2

�2

"2�2
:
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One may go one step further and ask how well does the empirical distributions Ln approx-
imate the measure �. Given a function ˆ W M1.X /! R one may define the sets

A" D f� 2 M1.X / W jˆ.�/ �ˆ.�/j � "ˆ.�/g:

Sanov’s Theorem can then be applied similarly to howCramér’s Theoremwas used above.

P .Ln 2 A"/ / e�nI.A"/:

Thus, we would like to have

n '
log.˛/

I.A"/
;

just like before, but where

I.A"/ D inffR.�j�/ W jˆ.�/ �ˆ.�/j � "ˆ.�/g:

Section 4 of the article by Hult & Nyquist [33] contains several examples of how Sanov’s

Theorem and Theorem 4.14 can be applied to evaluate the performance CMC and IS esti-

mators. For more on the application of large deviations to importance sampling and rare

events the book [17] is a good introduction. Another recent book on large and moderate

deviations with applications to rare events, based on the weak convergence approach, that

covers many more applications of the large deviations principle is [18].
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5 Conclusion
We have shown that many known results in the theory of weak convergence of probability

measures also hold in the space of nonnegative finite measures. Especially, we have shown

that empirical distributions of the IS estimator converge weakly. Furthermore, we intro-

duced the �-topology and compared it with the topology of weak convergence. Many of

these results were required in chapter 4 on large deviations.

All of the results in chapter 4 are known and due to others. We closely followed the ap-

proach of Dembo & Zeitouni [24], Deuschel & Strock [25] and de Acosta [2], [3], where

convexity in topological linear spaces play an important role. We also introduced projective

limits and showed how Sanov’s Theorem can be deduced from Cramér’s Theorem for finite

dimensional spaces. We believe that Sanov’s Theorem for the empirical distributions of the

IS estimators (Theorem 4.14) can be proved using similar methods and that the condition

that X is Polish can be replaced with the much weaker condition that X is a measurable

space. Just like in the case of Sanov’s Theorem in the �-topology.

The proof of Theorem 4.14 in [33] uses the weak convergence approach to large deviations.

We have not discussed the weak convergence approach, but it is extensively covered in the

research monograph [30]. An interesting question is whether these results can be extended

to the weighted importance sampling estimator Jn. The case of the weighted importance

sampling estimator is much more difficult, because independence is lost. Another challenge

is that the estimator is biased.

Finally, we showed how Cramér’s and Sanov’s Theorem can be applied to approximate re-

quired sample size to achieve a desired precision using the Monte Carlo method. There are

many clever way to define sets like we did withA" in Chapter 5 that can be used gain insight

into the performance of the CMC and IS estimators. Several examples are given in section

4 of [33]. We compared this with the required sample sizes that can be derived from the

confidence intervals of the CMC estimator, but there are other results which can be used

to estimate the required sample sizes to achieve a desired precision. A recent result of this

nature is given [19], where the relative entropy appear in their formula for the required

sample size. It would be interesting to study whether some of these bounds on the sample

size can be attained using the large deviation bounds.
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A Preliminaries

A.1 Measure Theory
We use A to denote an algebra of subsets of X and B to denote a �-algebra of subsets of

X . Given a collection C � 2X we use �.C/ to denote the smallest �-algebra containing C

and A.C/ to denote the smallest algebra containing C . The inverse image of a �-algebra is

always a �-algebra and it leads to the following.

Lemma A.1 ([5, Lemma 4.23]). Let f W X ! Y and C � 2Y , then

�
�
f �1.C/

�
D f �1

�
�.C/

�
:

The lemma above implies the following useful result.

Lemma A.2 ([5, Corollary 4.24]). Let .X ;BX / and .Y;BY/ be measurable spaces. If BY D
�.C/, then f W X ! Y is measurable if and only if

f �1.C / 2 BX ; for every C 2 C :

Given a nonempty collection of functions F from X to a measurable space .Y;BY/, the
�-algebra generated by F is defined as the smallest �-algebra which makes every function

in F measurable. It is given by

�.f W f 2 F / WD �
�
f �1.BY/ W f 2 F

�
:

WheneverX is a topological space we use BX to denote the Borel �-algebra. Recall that the

product �-algebra on the product space X of the measurable spaces f.X˛;B˛g is defined

as O
B˛ WD �

�
fp�1˛ .A˛/ W A˛ 2 B˛g

�
;

where p˛ denotes the projection map onto the ˛-th coordinate. From this definition and

the definition of the product topology it is clear that for every collection .X˛/ of topological
spaces O

B.X˛/ � B
�Y

X˛
�
:

For countable collections the following useful results hold (see e.g. [31, Proposition 1.4-5])

TheoremA.1. Let I be a countable collection, and .Xi ;Bi / a collection of measurable spaces,
then O

i2I

Bi D �
�nY

Ai W Ai 2 Bi

o�
:

Furthermore if Xi are separable and second countable topological spaces, thenO
B.Xi / D B

�Y
Xi

�
:

Definition A.1. A collection, P of subsets of X is called a �-system if P is closed under

finite intersections.

Definition A.2. A collection, D of subsets of X is called a �-system if it satisfies
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1. X 2 D .

2. B n A 2 D whenever A;B 2 D and A � B .

3. limnAn 2 D whenever .Ai / is an increasing sequence of sets in D .

The following result is well known see e.g. [35, Theorem 1.1].

Theorem A.2 (Dynkins � � � Theorem). Let D be a �-system and P be a �-system on X .
If P � D , then �.P / � D .

A.2 Probability Theory
In general the k�th moment of a real valued random variable is defined as EŒjXkj�. Since
probability spaces are finite measure spaces, it follows from Hölder’s inequality that if a

random variable has finite moment for some positive integer n, then it has finite moment

for every positive integer k � n. For the 2-nd moment we especially get the following

probabilistic Cauchy-Schwartz inequality

EŒjX j� �
p

EŒjX2j�:

The moment generating function of a real valued random variable X with distribution �, is

given by

MX .s/ WD

Z
X
esx d�.x/ ;

and is defined for every real s for which MX .s/ is finite. It is clear that MX .0/ D 1 for

every real valued random variable X , henceMX .s/ is always well defined at 0. We say that

the moment generating function of X exists whenever there exists an open interval of the

form .�h; h/ whereMX .s/ is finite. The moment generating function is log-convex which

means that logMX is convex.

Inequalities
In this section we present three inequalities which will be used throughout the text. We

start with Markov’s inequality which provides an upper bound for the probability that the

absolute value of a random variable is greater than t > 0.

Lemma A.3 (Markov’s Inequality). Let X be a real valued random variable, then for every
t > 0 it holds that

P .jX j � t / �
EŒjX j�

t
:

The proof follows immediately after noting that

P .jX j � t / D

Z
jX j�t

1 dP �
1

t

Z
�

jX j dP :

By applying Markov’s inequality to the function .X � EŒX�/2 the following very similar

result follows.

Lemma A.4 (Chebychev’s inequality). Let X be a real valued random variable with finite
variance, then for every t > 0 it holds that

P .jX � EŒX�j � t / �
V ŒX�

t2
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Chebychev’s inequality differs from Markov’s inequality in that it describes the probability

that a random variable X deviates from its expected value.

Lemma A.5 (Chernoff’s Bound). Let X be a real valued random variable and assume that
the moment generating function MX .s/ exists in some open interval .�h; h/, then for every
t > 0 and s 2 .�h; h/ it holds that

P .X � t / �MX .s/e
�st :

Independence
Throughout this section we assume that .�;F ;P / is a probability space and we use Fi
to denote sub ��algebras of F . Let fFig be a collection of sub �-algebras of F , then

fFig are said to be independent provided for every finite subcollection fFi1 ; : : :Fing it holds
that

P .Ai1 \ � � � \ Ain/ D P .Ai1/ � � �P .Ain/;

whenever Aik 2 F Similarly, we say that the events A1; : : : ; An 2 F are independent

if

P .A1 \ � � � \ An/ D P .A1/ � � �P .An/:

Given a random variableX W �! X the � -algebra generated by X is defined as the smallest

�-algebra containing X�1.BX / and denoted by �.X/. A collection of random variables

fXig are independent if the �-algebras f�.Xi /g are independent. Independence of sets is

equivalent to independence of their indicator functions.

LemmaA.6. The setsA1; : : : An are independent if and only if the indicator functions 1A1 ; : : : ; 1An
are independent.

Lemma A.7. Let X1; : : : ; Xn be random variables taking values in the measurable spaces
.X1;B1/; : : : ; .Xn;Bn/, then the random vector Xn W � W! X1 � � � � � Xn defined by Xn D
.X1; : : : ; Xn/ has distribution �1 ˝ � � � ˝ �n if and only if X1; : : : ; Xn are independent.

The following Lemma show some useful properties of independent randomvariables.

Lemma A.8. Let X1; : : : ; Xn be independent random variables taking values in the measur-
able spaces .X1;B1/; : : : ; .Xn;Bn/ and f be an integrable function on .X1 � � � � �Xn; �1˝
� � � ˝ �n/ then

EŒf .X1; : : : ; Xn/ D

Z
X1����Xn

f .x1; : : : ; xn/ d�1 ˝ � � � ˝ d�n

D

Z
X1
� � �

Z
Xn
f .x1; : : : ; xn d�n.xn/ � � � d�1.x1/ :

Using LemmaA.8 it is easy to derive that for independent real valued randomvariables

EŒX1 � � �Xn� D EŒX1� � � �EŒXn�;

and

V ŒX1 C � � � CXn� D V ŒX1�C � � � C V ŒXn�:
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Limit Theorems
We use Sn W �! X to denote the random variable given by

Sn.!/ WD
1

n

X
iD1

Xi .!/:

Theorem A.3 (Weak law of large numbers). Let X1; X2; : : : be i.i.d. real valued random

variables on .�;F ;P / with finite expectation EŒX�, then Sn
P
�! EŒX�, i.e.

lim

n!1
P

�n
! 2 � W jSn.!/ � EŒX�j � "

o�
D 0:

Theorem A.4 (Strong law of large numbers). Let X1; X2; : : : be i.i.d. real valued random
variables on .�;F ;P / with finite expectation EŒX�, then Sn ! EŒX� almost surely, i.e.

P

�n
! 2 � W lim

n!1
Sn ! EŒX�

o�
D 1:

TheoremA.5 (Central Limit Theorem). LetX1; X2; : : : be i.i.d. real valued random variables
on .�;F ;P / with finite expectation EŒX�, and finite variance �2 D V ŒX� > 0, then

p
n

�

 
1

n

nX
iD1

Xi � EŒX�

!
H) N .0; 1/:

A.3 Topological Preliminaries

Nets and Convergence in Topological Spaces
This section briefly reviews some basic definitions about convergence and nets in general

topological spaces. All spaces we shall be concerned with in this text are assumed to be

Hausdorff (T2). There are many great textbooks on general topology and functional analysis

which treat these topics in detail. See for example Willard [53], Kelley [36], and Aliprantis

& Charalambos [5].

Let .X ; T / be a topological space and x 2 X , recall that a collection, N .x/, of neighbour-

hoods of x is called a local basis at x (also known as neighbourhoods basis) if for every

neighbourhood U of x there exists an element N 2 N .x/ such that N � U . A topological

space X is said to be first countable if every point x 2 X has a countable local basis. In first

countable spaces, sequences preserve many topological properties which are generally of

interest. For instance, a point x lies in the closure A of a subset of a first countable space iff

there exists a sequence inA converging to x. It follows from this that a map f W X ! Y be-

tween two first countable spaces sequences is continuous if and only if f .xn/! f .lim xn/

for every convergent sequence .xn/ in X (see e.g. Willard [53, Theorem 10.4 and Corollary

10.5]).

In Hausdorff spaces which are not first countable nets provide a generalization of limits that

preserves all topological invariants of interest to us when introducing different topologies

on M1.X /. In order to define nets we need must start with the definition of a directed set.
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Definition A.3. A directed set, is a nonempty set I with a binary relation � that satisfy

1. ˛ � ˛ for every ˛ 2 I .

2. If ˛; ˇ;  2 I satisfy ˛ � ˇ and ˇ �  , then ˛ �  .

3. If ˛; ˇ 2 I , then there exists  2 I such that ˛ �  and ˇ �  .

If we would remove the third criteria in the definition of a directed set we would instead

have a partial ordering (�) on I . Nets are an extension of sequences in general topological

spaces with directed sets as index sets.

Definition A.4. A net in a topological space X is a function P W I ! X with domain I a

directed set.

Just like with sequences we use the notation x˛ to denote P.˛/ 2 X for ˛ 2 I , and we

write .x˛/ to denote the net P W I ! X . The definition of convergence of nets is similar to

the definition of convergence for sequences in topological spaces.

Definition A.5. A net .x˛/ over the index set I converges to x 2 X if for every neighbour-

hood U of x there exists ˛0 2 I such that x˛ 2 U whenever ˛ � ˛0.

In Theorem A.6 below we summarize three of the main properties of nets which make them

useful generalizations of sequences for general topological spaces. Proofs of the statements

can be found in most topology textbooks (see e.g. [53, Thm. 11.7-8]).

Theorem A.6. Let X and Y be topological spaces, then

1. If A � X , then x 2 A if and only if there exists a net .x˛/ converging to X .

2. A function f W X ! Y is continuous if and only if the net f .x˛/ ! f .x/ in Y for
every net .x˛/converging to x 2 X .

3. If X is Hausdorff and a net converges, then the limit is unique.

We may also define the limit superior and limit inferior for nets of real numbers.

Definition A.6. Let .x˛/ be a net in R, then we define the limit inferior and limit superior
of .x˛/˛2I as

lim inf

˛
x˛ WD sup

˛2I

�
inf

ˇ�˛
xˇ

�
;

lim sup

˛

x˛ WD inf

˛2I

 
sup

ˇ�˛

xˇ

!
:

A.4 Topological Linear Spaces

Weak Topologies in Linear Spaces
Throughout this section we use X to denote be a (real) linear space. We say that X is a

topological linear space if it is equipped with a topology T such that that vector addition

and and scalar multiplication are continuous maps. All vector spaces of interest to us will

be Hausdorff, i.e. for any two distinct points inX there exists disjoint open neighbourhoods.

In a Hausdorff space singletons are closed, and in topological linear spaces the converse also
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holds, i.e. if fxg is closed for every x 2 X , then X is Hausdorff (see e.g. [45, Theorem 1.12]).

A topological linear space is locally convex if there exists a local base at 0 in which every

member is convex. I.e. X is locally convex iff every neighbourhood of 0 has subset that is

a convex neighbourhood of 0. We shall now turn our attention to different topologies on

linear spaces and their dual spaces.

A subsetS � T is a sub-basis for the topology T onX if every open set,U , can be expressed

as a union of finite intersections of elements of S . The topology generated by a sub-basis S

is the same as the topology generated by the basis

U D fS1 \ � � � \ Sn W n 2 N; S1; : : : ; Sn 2 Sg ;

i.e. the collection of all finite intersections of subsets of S . Thus, a set U is open in the

topology generated by S if and only if for every x 2 U there exists a finite collection

S1; : : : ; Sn 2 S such that

x 2 S1 \ � � � \ Sn � U:

A sub-basis is in many ways more natural than a basis for generating a topology from a

collection of subsets of a space. Any collection S � 2X is a sub-basis for a topology on X ,

which is the unique weakest topology onX containing S . Let F be a collection of functions

with domain X and each function f 2 F taking values in a topological space .Xf ; Tf /.
Then, a sub-basis for the weakest topology such that every map f 2 F is continuous is

given by

SF D ff
�1.E/ W f 2 F ; E 2 Tf g: (74)

If Uf is a basis for the topology Tf we may restrict the sets E in equation (74) to be taken

from Uf instead. The weak topology generated by F on X is the topology T which have

SF as sub-basis, it is the weakest topology such that every map f 2 F is continuous. Let

X � denote the dual space of the locallly convex linear space X , i.e. the space of continuous

real valued linear functionals with domain X . There is a canonical isomorphism of X into

a subspace of its double dual V �� where each element x 2 X is mapped into the evaluation

map Ox 2 X �� defined by

Ox.ƒ/ WD ƒ.x/; for everyƒ 2 X �:

An application of the Hahn-Banach Theorem can be used to show that the mapping x 7! Ox

is norm-preserving and that X is linearly isomorphic to its image OX � X �� under this

map. For a proof of this fact the reader is referred to Theorem 10, Chapter 3 of [14] and

the surrounding discussion. The weak* topology on the dual X � is then weak topology

generated by the collection OX � X ��. It follows from the definition of the weak topology

that a set U � X � is open in the weak* topology iff for every ƒ 2 U there exists a finite

collection of elements Oxi and open intervals .ai ; bi / � R such that

ƒ 2 Ox�11 .a1; b1/ \ � � � \ Ox
�1
n .an; bn/ � U:

The next lemma follows directly from the definition of the weak* topology and provides

a usefula critetion for a set being open in the weak* topology. Some authors use it as the

definition of the weak* topology.

Lemma A.9. A set U � X � is open in the weak* topology iff for every ƒ 2 U there exists a
finite collection of points x1; : : : ; xn 2 X and " > 0 such that

fƒ0 2 X � W jƒ.xi / �ƒ0.xi /j < "; for every i D 1; : : : ; ng � U:
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Equivalently put, for every ƒ 2 X � the collection of all sets of the form above constitute a

neighbourhood basis at ƒ. From the definition of the weak* topology it is immediate that

a net .ƒ˛/ in X � converges to ƒ 2 X � if and only if the net ƒ˛.x/ converges pointwise

to ƒ.x/ for every x 2 X . This is of such importance that we state it in the theorem below.

Theorem A.7. Let X be a topological vector space, then a net .ƒ˛/ in the dual X � converges
weakly* to ƒ 2 X � iff

lim

˛
ƒ˛.x/ D ƒ.x/; for every x 2 X :

Weak Compactness
Theorem A.8 (Eberlain-Smulian Theorem (see e.g. [29, §V.6.1]). Let X be a Banach space
and K � X , then the following three statements are equivalent:

1. K is weakly sequentially compact.

2. If A D fxn W n 2 Ng � K , then A has a weak limit point in K .

3. The weak closure of K is weakly compact.

Convexity
In this section we review some basic facts about convex sets in topological linear spaces all

of which can be found in chapter 5 of Aliprantis and Border [5].

Definition A.7. A subset A � X is convex if

ftx C .1 � t /y W t 2 Œ0; 1�g � A; for every x; y 2 A:

Equivalently a set A is convex if and only if it holds that

nX
iD1

tixi 2 A;

for every finite collection of points x1; : : : ; xn 2 A and nonnegative real numbers t1; : : : ; tn
which satisfy t1 C : : : ; tn D 1. The following Lemma captures important properties of

convex sets.

Lemma A.10 ( [5, Lemma 5.27 & 5.28] ). Let fAig be a, possibly uncountable, collection of
convex sets, then

1. C1 C C2 is convex.

2. tC is convex for every t 2 R.

3.
T
i Ai is convex.

4. Ao and A are convex and satisfy

tAo
C .1 � t /A � A; t 2 .0; 1�:

5. If Ao ¤ ;, then Ao D A, and A
o
D Ao.
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Definition A.8. The convex hull of A � X , written co.A/ is the smallest convex set con-

taining A.

Since the intersection of arbitrary collections of convex sets are closed it follows that the

convex hull of A is the intersection of all convex subsets of X containing A. The convex

hull of A can also be expressed as

co.A/ D

(
nX
iD1

tixi W xi 2 A; ti 2 Œ0; 1�;

nX
iD1

ti D 1; n 2 N

)
:

Definition A.9. The closed convex hull of A � X , written co.A/ is the smallest closed

convex subset of X containing A.

The closed convex hull of A is equal to the closure of the convex hull of A, i.e. co.A/ D

co.A/.

Theorem A.9 ( [5, Thm 5.35]). Let X be a locally convex completely metrizable topological
linear space and K � X compact, then co.K/ is compact.

Theorem A.10. A convex subset of a locally convex space is weakly closed if and only if it is
strongly closed.
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