

Gamma Random Number Generation on GPUs using CUDA

Johan Ericsson June 19, 2024 — KTH Royal Institute of Technology

1. Introduction

- 2. Background
- 3. Methods

4. Results

5. Conclusions

• Stochastic simulation techniques play an important role in modern society with a diverse range of applications:

- Stochastic simulation techniques play an important role in modern society with a diverse range of applications:
 - 1. telecommunication systems
 - 2. nuclear physics
 - 3. weather forecasting and climate modeling

- Stochastic simulation techniques play an important role in modern society with a diverse range of applications:
 - 1. telecommunication systems
 - 2. nuclear physics
 - 3. weather forecasting and climate modeling
- Monte Carlo Simulations has been used since the Manhattan Project.

- Stochastic simulation techniques play an important role in modern society with a diverse range of applications:
 - 1. telecommunication systems
 - 2. nuclear physics
 - 3. weather forecasting and climate modeling
- Monte Carlo Simulations has been used since the Manhattan Project.
- Require that we can simulate random variables efficiently!

Introduction

• Graphical processing units (GPUs) and other accelerators are becoming more important.

- Graphical processing units (GPUs) and other accelerators are becoming more important.
- The computer architecture of GPUs differ from that of classical central processing units (CPUs).

- Graphical processing units (GPUs) and other accelerators are becoming more important.
- The computer architecture of GPUs differ from that of classical central processing units (CPUs).
- Algorithms that perform well on CPUs may not perform well on GPUs and vice versa.

- Graphical processing units (GPUs) and other accelerators are becoming more important.
- The computer architecture of GPUs differ from that of classical central processing units (CPUs).
- Algorithms that perform well on CPUs may not perform well on GPUs and vice versa.
- Challenges when implementing code that require random numbers on GPUs:
 - 1. Poor library support for complex distributions (e.g. gamma)
 - 2. Much of the existing literature is focused on CPUs and not GPUs.

Introduction

• We present the first comparison of the performance of gamma random number generation algorithms on GPUs.

• We present the first comparison of the performance of gamma random number generation algorithms on GPUs.

• We describe the implementation and design of efficient random number generation kernels on GPUs.

• We present the first comparison of the performance of gamma random number generation algorithms on GPUs.

• We describe the implementation and design of efficient random number generation kernels on GPUs.

 Our results show that a 1000× speedup can be achieved when generating gamma random numbers on a consumer grade GPU compared to on a CPU (single thread).

Let $\alpha, \beta > 0$ be real numbers, then the gamma distribution $\Gamma(\alpha, \beta)$ has p.d.f.

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

The parameters are called: shape (α) and scale (β) .

Let $\alpha, \beta > 0$ be real numbers, then the gamma distribution $\Gamma(\alpha, \beta)$ has p.d.f.

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

The parameters are called: shape (α) and scale (β) .

Figure: Gamma Distribution for different shape and scale parameters.

1. If $X \sim \Gamma(1, \beta)$, then $X \sim \text{Exp}(\lambda)$ with $\lambda = \frac{1}{\beta}$.

1. If $X \sim \Gamma(1, \beta)$, then $X \sim \text{Exp}(\lambda)$ with $\lambda = \frac{1}{\beta}$.

2. If $X_i \sim \Gamma(\alpha_i, \beta)$, then

 $cX_1+\cdots+cX_n\in \Gamma(\alpha_1+\cdots+\alpha_n,c\beta).$

1. If $X \sim \Gamma(1, \beta)$, then $X \sim \text{Exp}(\lambda)$ with $\lambda = \frac{1}{\beta}$.

2. If $X_i \sim \Gamma(\alpha_i, \beta)$, then

$$cX_1 + \dots + cX_n \in \Gamma(\alpha_1 + \dots + \alpha_n, c\beta).$$

3. If $Y \sim \Gamma(\alpha + 1, 1)$ for some $\alpha > 0$ and $U \sim U(0, 1)$ be independent random variables, then

$$X = Y U^{1/\alpha} \sim \Gamma(\alpha, 1).$$

Item 2 and 3 above implies that $\Gamma(\alpha, 1)$ ($\alpha > 1$) variates can be cheaply transformed to $\Gamma(\alpha, \beta)$ variates for arbitrary α, β . Hence, our focus is on $\Gamma(\alpha, 1)$ generators for $\alpha > 1$.

• There are two types of random number generators (RNGs) uniform and non-uniform.

- There are two types of random number generators (RNGs) uniform and non-uniform.
- Uniform RNGs produce uniform U(0, 1) random samples (random bits).

- There are two types of random number generators (RNGs) uniform and non-uniform.
- Uniform RNGs produce uniform U(0, 1) random samples (random bits).
- Non-uniform RNGs use uniform RNGs for randomness combined with mathematical transforms to generate samples from other distributions.

- There are two types of random number generators (RNGs) uniform and non-uniform.
- Uniform RNGs produce uniform U(0, 1) random samples (random bits).
- Non-uniform RNGs use uniform RNGs for randomness combined with mathematical transforms to generate samples from other distributions.
- Only one method is used for gamma generation: rejection sampling.

- At the highest level a GPU consists of several streaming multiprocessors (SMs).
- The SMs have a *single instruction, multiple threads (SIMT)* design: many compute cores each have their own registers and but are collected in groups which share the same instruction control unit.

Figure: Illustration of GPU architecture showing SMs, CUDA cores, and L1 cache.

Algorithm 1: Rejection Sampling

Data: Desired distribution f, proposal distribution g, constant M

Result: Sample from distribution X

Input: Initialize *accepted* ← false

- 1 while not accept do
- 2 Sample y ~ Y
- 3 Sample *u* ~ *U*(0, 1)
- 4 if $u < \frac{f(y)}{M \cdot q(y)}$ then
 - accept ← true
- 6 end
- 7 return y
- 8 end

5

Large difference between CPUs and GPUs when it comes to efficient rejection samling:

Large difference between CPUs and GPUs when it comes to efficient rejection samling:

• Warps and SIMT architecture leads to different rejection distributions (see [8]).

Large difference between CPUs and GPUs when it comes to efficient rejection samling:

• Warps and SIMT architecture leads to different rejection distributions (see [8]).

Figure: Visualization of warp divergence. The arrow indicates that the thread is doing work and the red square indicates that the thread is idle.

Rejection Sampling on GPUs

Background

Analytical formula for the probability

$$P(N = k) = (1 - \rho^n)^t - (1 - \rho^{n-1})^t$$

where:

- *N* number iterations until accept
- t warp size (32 for NVIDIA GPUs)
- *ρ* rejection probability

KTH

• We selected and implemented a selection of existing gamma generation algorithm in CUDA as __device__ kernels

- We selected and implemented a selection of existing gamma generation algorithm in CUDA as __device__ kernels
- Benchmarking class was written using C++ templates with the device kernel passed as a template parameter

- We selected and implemented a selection of existing gamma generation algorithm in CUDA as __device__ kernels
- Benchmarking class was written using C++ templates with the device kernel passed as a template parameter
- Flexibility in selecting kernel to benchmark without the overhead of any runtime dispatch.

- We selected and implemented a selection of existing gamma generation algorithm in CUDA as __device__ kernels
- Benchmarking class was written using C++ templates with the device kernel passed as a template parameter
- Flexibility in selecting kernel to benchmark without the overhead of any runtime dispatch.
- The gamma generation benchmark class use persistent threads (PT) [2], [6].

We selected 5 kernels that we believe can be be efficiently implemented on the GPU:

- Best (XG) [3]
- Cheng (GA) [4]
- Cheng-Feast (GMK3) [5]
- Ahrens-Dieter (GC) [1]
- Marsaglia-Tsang [7]

We selected 5 kernels that we believe can be be efficiently implemented on the GPU:

- Best (XG) [3]
- Cheng (GA) [4]
- Cheng-Feast (GMK3) [5]
- Ahrens-Dieter (GC) [1]
- Marsaglia-Tsang [7]

The first four are published in the 1970s and Marsaglia-Tsang in 2000. Their measurements are on ~ 50 year old computer hardware!

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations are correct and generate gamma distributed output.

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations are correct and generate gamma distributed output.

• We know mathematically that the output should be gamma distributed.

Verification of implementations

Methods

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations are correct and generate gamma distributed output.

• We know mathematically that the output should be gamma distributed.

 Output quality depends on the uniform RNG. CUDAs default uniform RNG was used: CURAND_RNG_PSEUD0_X0RW0W

• Measured the execution times for each gamma kernel when generating samples of single precision floating-point numbers.

- Measured the execution times for each gamma kernel when generating samples of single precision floating-point numbers.
- Varying sample sizes between $2^{22} \approx 4 \times 10^6$ and $2^{28} \approx 2.68 \times 10^8$.

- Measured the execution times for each gamma kernel when generating samples of single precision floating-point numbers.
- Varying sample sizes between $2^{22} \approx 4 \times 10^6$ and $2^{28} \approx 2.68 \times 10^8$.
- The measurements were done for four different values of $\alpha = 1.0001, 2, 4, 10$

- Measured the execution times for each gamma kernel when generating samples of single precision floating-point numbers.
- Varying sample sizes between $2^{22} \approx 4 \times 10^6$ and $2^{28} \approx 2.68 \times 10^8$.
- The measurements were done for four different values of $\alpha = 1.0001, 2, 4, 10$
- Warmup iteration + 10 measurements, means are reported in figures with variance errorbars.

- Linux host running Ubuntu 22.04.3 LTS with linux kernel version 5.15.0-58-generic.
- AMD Ryzen 9 5950X 16-Core CPU with clock frequency 3.4GHz and memory listed in table 1.

L1d cache	512 KiB
L1i cache	512 KiB
L2 cache	8 MiB
L3 cache	64 MiB
RAM	32 GiB (2x16 GiB)
SSD	1TB

Table: Cache sizes for the AMD 5950X CPU used for benchmarking and installed memory sizes.

• NVIDIA GeForce RTX 4070 GPU

Ada Lovelace			
5888			
1.92 GHz			
12 GiB			
192-bit			
504.2 GB/s			
192 KiB per SM			
36 MiB			

Table: Key stats for the NVIDIA GeForce RTX 4070 GPU used for measurements.

Results

Verification of Output

Results

Algorithm	<i>α</i> = 1.0001		α = 2.0		α = 10.0	
	D _n	p-value	D _n	p-value	D _n	p-value
Cheng-Feast (GKM3)	0.0012	0.11	0.00094	0.34	0.0015	0.018
Marsaglia-Tsang	0.00059	0.88	0.00069	0.72	0.00072	0.67
Cheng (GA)	0.00067	0.76	0.00052	0.95	0.00074	0.64
Best (XG)	0.00069	0.73	0.00059	0.87	0.00062	0.84
Ahrens-Dieter (GC)	0.00063	0.83	0.00059	0.88	0.00064	0.80

Table: KS-test results of the algorithms for selected values of α .

Verification of Output

Results

Algorithm	<i>α</i> = 1.0001		α = 2.0		α = 10.0	
	D _n	p-value	D _n	p-value	D _n	p-value
Cheng-Feast (GKM3)	0.0012	0.11	0.00094	0.34	0.0015	0.018
Marsaglia-Tsang	0.00059	0.88	0.00069	0.72	0.00072	0.67
Cheng (GA)	0.00067	0.76	0.00052	0.95	0.00074	0.64
Best (XG)	0.00069	0.73	0.00059	0.87	0.00062	0.84
Ahrens-Dieter (GC)	0.00063	0.83	0.00059	0.88	0.00064	0.80

Table: KS-test results of the algorithms for selected values of α .

The p-values suggest that all algorithms produce gamma distributed output, except Cheng-Feast (GKM3) for high α which is much worse than the other algorithms.

Verification of Output

Results

Figure: Histogram of output of Cheng-Feast (GKM3) 10⁶ samples.

Figure: Histogram of output of Cheng-Feast (GKM3) 10⁶ samples. Johan Ericsson

Execution times $\alpha = 1.0001$

Results

Figure: Measured execution times for $\alpha = 1.0001$.

Figure: Measured execution times for the best kernels α = 1.0001 and with cuRAND normal.

Johan Ericsson

Execution times $\alpha = 10$

Results

 α = 10

1.5

Samples generated

2.0

2.5

 $\times 10^{8}$

Marsaglia-Tsang

Cheng (GA)

0.5

Ahrens-Dieter (GC)

cuRAND normal (device API)

Figure: Measured execution times for $\alpha = 10$.

Figure: Measured execution times for the best kernels $\alpha = 10$ and with cuRAND normal.

1.0

Johan Ericsson

15.0

12.5

10.0

7.5

5.0

2.5

0.0

0.0

Time (milliseconds)

Results

Cheng-Feast (GKM3)

2.1e+08

Figure: Speedup compared to CPU single thread (C++ STL) for α = 1.0001. Johan Ericsson

Figure: Speedup compared to CPU single thread (C++ STL) for $\alpha = 10$.

Samples Generated

1.4e+08

7.1e+07

Speedup over C++ STL (single thread) $\alpha = 10$

Marsaglia-Tsang

Ahrens-Dieter (GC)

KTH

1400 -

1200

1000

600

400

200

Speedup 800 Cheng (GA)

Best (XG)

4.2e+06

Conclusions

Conclusions

• It is possible to efficiently generate gamma random numbers on GPUs.

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [4] which perform very well on the GPU across all $\alpha > 1$.

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [4] which perform very well on the GPU across all $\alpha > 1$.
 - (Not often mentioned in the literature, which is focused on CPUs).

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [4] which perform very well on the GPU across all $\alpha > 1$.
 - (Not often mentioned in the literature, which is focused on CPUs).
 - Achieves > 1000× speedup compared to CPU for α > 2.

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [4] which perform very well on the GPU across all $\alpha > 1$.
 - (Not often mentioned in the literature, which is focused on CPUs).
 - Achieves > 1000× speedup compared to CPU for α > 2.
 - Easy to implement ~ 25 lines of code.

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [4] which perform very well on the GPU across all $\alpha > 1$.
 - (Not often mentioned in the literature, which is focused on CPUs).
 - Achieves > 1000× speedup compared to CPU for α > 2.
 - Easy to implement ~ 25 lines of code.
- Shows that rejection sampling does not have to be "bad" on GPUs.

• The best algorithms for generating random numbers from other complex distributions on GPUs are not known.

• The best algorithms for generating random numbers from other complex distributions on GPUs are not known.

• A natural question is whether the performance comparison on CPUs are still valid?

• The best algorithms for generating random numbers from other complex distributions on GPUs are not known.

• A natural question is whether the performance comparison on CPUs are still valid?

• The same work can be done for modern CPUs.

Conclusions

Feel free to ask questions!

- [1] Joachim H. Ahrens and Ulrich Dieter. "Computer methods for sampling from gamma, beta, poisson and bionomial distributions". In: *Computing* 12.3 (1974), pp. 223–246. DOI: 10.1007/BF02293108. URL: https://doi.org/10.1007/BF02293108.
- [2] Timo Aila and Samuli Laine. "Understanding the efficiency of ray traversal on GPUs". In: Proceedings of the Conference on High Performance Graphics 2009. HPG '09. New Orleans, Louisiana: Association for Computing Machinery, 2009, pp. 145–149. ISBN: 9781605586038. DOI: 10.1145/1572769.1572792. URL: https://doi.org/10.1145/1572769.1572792.

- [3] D. J. Best. "Letters to the Editors". eng. In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 27.2 (1978), pp. 181–182. ISSN: 0035-9254. DOI: 10.1111/j.1467-9876.1978.tb01041.x. URL: https://doi.org/10.1111/j.1467-9876.1978.tb01041.x.
- [4] R. C. H. Cheng. "The Generation of Gamma Variables with Non-Integral Shape Parameter". In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 26.1 (1977), pp. 71–75. URL: http://www.jstor.org/stable/2346871 (visited on 05/17/2024).

- R. C. H. Cheng and G. M. Feast. "Some Simple Gamma Variate Generators". In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 28.3 (1979), pp. 290–295. DOI: 10.2307/2347200. URL: https://doi.org/10.2307/2347200.
- [6] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. "A study of Persistent Threads style GPU programming for GPGPU workloads". In: 2012 Innovative Parallel Computing (InPar). 2012, pp. 1–14. DOI: 10.1109/InPar.2012.6339596.
- [7] George Marsaglia and Wai Wan Tsang. "A simple method for generating gamma variables". In: ACM Trans. Math. Softw. 26.3 (2000), pp. 363–372. DOI: 10.1145/358407.358414. URL: https://doi.org/10.1145/358407.358414.

[8] Gavin Ridley and Benoit Forget. "A simple method for rejection sampling efficiency improvement on SIMT architectures". In: *Stat. Comput.* 31.3 (2021), p. 30. DOI: 10.1007/S11222-021-10003-Z. URL: https://doi.org/10.1007/s11222-021-10003-z.

