
Gamma Random Number Generation
on GPUs using CUDA

Johan Ericsson
June 19, 2024— KTH Royal Institute of Technology



Table of contents

1. Introduction

2. Background

3. Methods

4. Results

5. Conclusions

Johan Ericsson KTH 2/36



Introduction



Motivation Introduction

• Stochastic simulation techniques play an important role in modern society with a
diverse range of applications:

1. telecommunication systems

2. nuclear physics

3. weather forecasting and climate modeling

• Monte Carlo Simulations has been used since the Manhattan Project.

• Require that we can simulate random variables efficiently!

Johan Ericsson KTH 4/36



Motivation Introduction

• Stochastic simulation techniques play an important role in modern society with a
diverse range of applications:

1. telecommunication systems

2. nuclear physics

3. weather forecasting and climate modeling

• Monte Carlo Simulations has been used since the Manhattan Project.

• Require that we can simulate random variables efficiently!

Johan Ericsson KTH 4/36



Motivation Introduction

• Stochastic simulation techniques play an important role in modern society with a
diverse range of applications:

1. telecommunication systems

2. nuclear physics

3. weather forecasting and climate modeling

• Monte Carlo Simulations has been used since the Manhattan Project.

• Require that we can simulate random variables efficiently!

Johan Ericsson KTH 4/36



Motivation Introduction

• Stochastic simulation techniques play an important role in modern society with a
diverse range of applications:

1. telecommunication systems

2. nuclear physics

3. weather forecasting and climate modeling

• Monte Carlo Simulations has been used since the Manhattan Project.

• Require that we can simulate random variables efficiently!

Johan Ericsson KTH 4/36



Changing Compute Landscape Introduction

• Graphical processing units (GPUs) and other accelerators are becoming more
important.

• The computer architecture of GPUs differ from that of classical central
processing units (CPUs).

• Algorithms that perform well on CPUs may not perform well on GPUs and vice
versa.

• Challenges when implementing code that require random numbers on GPUs:

1. Poor library support for complex distributions (e.g. gamma)

2. Much of the existing literature is focused on CPUs and not GPUs.

Johan Ericsson KTH 5/36



Changing Compute Landscape Introduction

• Graphical processing units (GPUs) and other accelerators are becoming more
important.

• The computer architecture of GPUs differ from that of classical central
processing units (CPUs).

• Algorithms that perform well on CPUs may not perform well on GPUs and vice
versa.

• Challenges when implementing code that require random numbers on GPUs:

1. Poor library support for complex distributions (e.g. gamma)

2. Much of the existing literature is focused on CPUs and not GPUs.

Johan Ericsson KTH 5/36



Changing Compute Landscape Introduction

• Graphical processing units (GPUs) and other accelerators are becoming more
important.

• The computer architecture of GPUs differ from that of classical central
processing units (CPUs).

• Algorithms that perform well on CPUs may not perform well on GPUs and vice
versa.

• Challenges when implementing code that require random numbers on GPUs:

1. Poor library support for complex distributions (e.g. gamma)

2. Much of the existing literature is focused on CPUs and not GPUs.

Johan Ericsson KTH 5/36



Changing Compute Landscape Introduction

• Graphical processing units (GPUs) and other accelerators are becoming more
important.

• The computer architecture of GPUs differ from that of classical central
processing units (CPUs).

• Algorithms that perform well on CPUs may not perform well on GPUs and vice
versa.

• Challenges when implementing code that require random numbers on GPUs:

1. Poor library support for complex distributions (e.g. gamma)

2. Much of the existing literature is focused on CPUs and not GPUs.

Johan Ericsson KTH 5/36



In this work we Introduction

• We present the first comparison of the performance of gamma random number
generation algorithms on GPUs.

• We describe the implementation and design of efficient random number
generation kernels on GPUs.

• Our results show that a 1000× speedup can be achieved when generating
gamma random numbers on a consumer grade GPU compared to on a CPU
(single thread).

Johan Ericsson KTH 6/36



In this work we Introduction

• We present the first comparison of the performance of gamma random number
generation algorithms on GPUs.

• We describe the implementation and design of efficient random number
generation kernels on GPUs.

• Our results show that a 1000× speedup can be achieved when generating
gamma random numbers on a consumer grade GPU compared to on a CPU
(single thread).

Johan Ericsson KTH 6/36



In this work we Introduction

• We present the first comparison of the performance of gamma random number
generation algorithms on GPUs.

• We describe the implementation and design of efficient random number
generation kernels on GPUs.

• Our results show that a 1000× speedup can be achieved when generating
gamma random numbers on a consumer grade GPU compared to on a CPU
(single thread).

Johan Ericsson KTH 6/36



Background



Gamma Distribution Background

Let α,β > 0 be real numbers, then the
gamma distribution Γ(α,β) has p.d.f.

𝑓(𝑥) = {
1

Γ(α)βα𝑥
α−1𝑒−𝑥/β, 𝑥 > 0,

0, 𝑥 ≤ 0.

The parameters are called: shape (α) and
scale (β).

0 1 2 3 4 5

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ili

ty
D

en
si

ty
f

(x
)

Gamma Distribution
α =1, β=1
α =1, β=3
α =3, β=1
α =3, β=3

Figure: Gamma Distribution for different shape and
scale parameters.

Johan Ericsson KTH 8/36



Gamma Distribution Background

Let α,β > 0 be real numbers, then the
gamma distribution Γ(α,β) has p.d.f.

𝑓(𝑥) = {
1

Γ(α)βα𝑥
α−1𝑒−𝑥/β, 𝑥 > 0,

0, 𝑥 ≤ 0.

The parameters are called: shape (α) and
scale (β).

0 1 2 3 4 5

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ili

ty
D

en
si

ty
f

(x
)

Gamma Distribution
α =1, β=1
α =1, β=3
α =3, β=1
α =3, β=3

Figure: Gamma Distribution for different shape and
scale parameters.

Johan Ericsson KTH 8/36



Gamma Distribution Background

1. If 𝑋 ∼ Γ(1,β), then 𝑋 ∼ Exp(λ) with λ = 1
β
.

2. If 𝑋𝑖 ∼ Γ(α𝑖,β), then
𝑐𝑋1 + ⋯ + 𝑐𝑋𝑛 ∈ Γ(α1 + ⋯ + α𝑛, 𝑐β).

3. If 𝑌 ∼ Γ(α + 1, 1) for some α > 0 and 𝑈 ∼ 𝑈(0, 1) be independent random variables,
then

𝑋 = 𝑌𝑈1/α ∼ Γ(α, 1).

Item 2 and 3 above implies that Γ(α, 1) (α > 1) variates can be cheaply transformed to
Γ(α,β) variates for arbitrary α,β. Hence, our focus is on Γ(α, 1) generators for α > 1.

Johan Ericsson KTH 9/36



Gamma Distribution Background

1. If 𝑋 ∼ Γ(1,β), then 𝑋 ∼ Exp(λ) with λ = 1
β
.

2. If 𝑋𝑖 ∼ Γ(α𝑖,β), then
𝑐𝑋1 + ⋯ + 𝑐𝑋𝑛 ∈ Γ(α1 + ⋯ + α𝑛, 𝑐β).

3. If 𝑌 ∼ Γ(α + 1, 1) for some α > 0 and 𝑈 ∼ 𝑈(0, 1) be independent random variables,
then

𝑋 = 𝑌𝑈1/α ∼ Γ(α, 1).

Item 2 and 3 above implies that Γ(α, 1) (α > 1) variates can be cheaply transformed to
Γ(α,β) variates for arbitrary α,β. Hence, our focus is on Γ(α, 1) generators for α > 1.

Johan Ericsson KTH 9/36



Gamma Distribution Background

1. If 𝑋 ∼ Γ(1,β), then 𝑋 ∼ Exp(λ) with λ = 1
β
.

2. If 𝑋𝑖 ∼ Γ(α𝑖,β), then
𝑐𝑋1 + ⋯ + 𝑐𝑋𝑛 ∈ Γ(α1 + ⋯ + α𝑛, 𝑐β).

3. If 𝑌 ∼ Γ(α + 1, 1) for some α > 0 and 𝑈 ∼ 𝑈(0, 1) be independent random variables,
then

𝑋 = 𝑌𝑈1/α ∼ Γ(α, 1).

Item 2 and 3 above implies that Γ(α, 1) (α > 1) variates can be cheaply transformed to
Γ(α,β) variates for arbitrary α,β. Hence, our focus is on Γ(α, 1) generators for α > 1.

Johan Ericsson KTH 9/36



Random Number Generation Background

• There are two types of random number generators (RNGs) uniform and
non-uniform.

• Uniform RNGs produce uniform 𝑈(0, 1) random samples (random bits).

• Non-uniform RNGs use uniform RNGs for randomness combined with
mathematical transforms to generate samples from other distributions.

• Only one method is used for gamma generation: rejection sampling.

Johan Ericsson KTH 10/36



Random Number Generation Background

• There are two types of random number generators (RNGs) uniform and
non-uniform.

• Uniform RNGs produce uniform 𝑈(0, 1) random samples (random bits).

• Non-uniform RNGs use uniform RNGs for randomness combined with
mathematical transforms to generate samples from other distributions.

• Only one method is used for gamma generation: rejection sampling.

Johan Ericsson KTH 10/36



Random Number Generation Background

• There are two types of random number generators (RNGs) uniform and
non-uniform.

• Uniform RNGs produce uniform 𝑈(0, 1) random samples (random bits).

• Non-uniform RNGs use uniform RNGs for randomness combined with
mathematical transforms to generate samples from other distributions.

• Only one method is used for gamma generation: rejection sampling.

Johan Ericsson KTH 10/36



Random Number Generation Background

• There are two types of random number generators (RNGs) uniform and
non-uniform.

• Uniform RNGs produce uniform 𝑈(0, 1) random samples (random bits).

• Non-uniform RNGs use uniform RNGs for randomness combined with
mathematical transforms to generate samples from other distributions.

• Only one method is used for gamma generation: rejection sampling.

Johan Ericsson KTH 10/36



GPU Architecture Background

• At the highest level a GPU consists of several streaming multiprocessors (SMs).
• The SMs have a single instruction, multiple threads (SIMT) design: many
compute cores each have their own registers and but are collected in groups
which share the same instruction control unit.

SM

L1 cache

… …

SM

L1 cache

…

CUDA cores

Figure: Illustration of GPU architecture showing SMs, CUDA cores, and L1 cache.

Johan Ericsson KTH 11/36



Rejection Sampling Background

Algorithm 1: Rejection Sampling
Data: Desired distribution 𝑓, proposal distribution 𝑔, constant 𝑀
Result: Sample from distribution 𝑋
Input: Initialize 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 ← false

1 while not accept do
2 Sample 𝑦 ∼ 𝑌
3 Sample 𝑢 ∼ 𝑈(0, 1)
4 if 𝑢 < 𝑓(𝑦)

𝑀⋅𝑔(𝑦) then

5 𝑎𝑐𝑐𝑒𝑝𝑡 ← true
6 end
7 return 𝑦
8 end
Johan Ericsson KTH 12/36



Rejection Sampling on GPUs Background

Large difference between CPUs and GPUs when it comes to efficient rejection
samling:

• Warps and SIMT architecture leads to different rejection distributions (see [8]).

Figure: Visualization of warp divergence. The arrow indicates that the thread is doing work and the red
square indicates that the thread is idle.

Johan Ericsson KTH 13/36



Rejection Sampling on GPUs Background

Large difference between CPUs and GPUs when it comes to efficient rejection
samling:
• Warps and SIMT architecture leads to different rejection distributions (see [8]).

Figure: Visualization of warp divergence. The arrow indicates that the thread is doing work and the red
square indicates that the thread is idle.

Johan Ericsson KTH 13/36



Rejection Sampling on GPUs Background

Large difference between CPUs and GPUs when it comes to efficient rejection
samling:
• Warps and SIMT architecture leads to different rejection distributions (see [8]).

Figure: Visualization of warp divergence. The arrow indicates that the thread is doing work and the red
square indicates that the thread is idle.

Johan Ericsson KTH 13/36



Rejection Sampling on GPUs Background

Analytical formula for the
probability

𝑃(𝑁 = 𝑘) = (1 − ρ𝑛)𝑡−(1 − ρ𝑛−1)𝑡 ,

where:
• 𝑁 - number iterations
until accept

• 𝑡 - warp size (32 for
NVIDIA GPUs)

• ρ - rejection
probability 2 4 6 8 10

iterations k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(
N

=
k

)

The p.m.f. of N in SIMT rejection sampling
ρ = 0.05

ρ = 0.1

ρ = 0.2

ρ = 0.5

Johan Ericsson KTH 14/36



Methods



Implementation of Kernels Methods

• We selected and implemented a selection of existing gamma generation
algorithm in CUDA as __device__ kernels

• Benchmarking class was written using C++ templates with the device kernel
passed as a template parameter

• Flexibility in selecting kernel to benchmark without the overhead of any runtime
dispatch.

• The gamma generation benchmark class use persistent threads (PT) [2], [6].

Johan Ericsson KTH 16/36



Implementation of Kernels Methods

• We selected and implemented a selection of existing gamma generation
algorithm in CUDA as __device__ kernels

• Benchmarking class was written using C++ templates with the device kernel
passed as a template parameter

• Flexibility in selecting kernel to benchmark without the overhead of any runtime
dispatch.

• The gamma generation benchmark class use persistent threads (PT) [2], [6].

Johan Ericsson KTH 16/36



Implementation of Kernels Methods

• We selected and implemented a selection of existing gamma generation
algorithm in CUDA as __device__ kernels

• Benchmarking class was written using C++ templates with the device kernel
passed as a template parameter

• Flexibility in selecting kernel to benchmark without the overhead of any runtime
dispatch.

• The gamma generation benchmark class use persistent threads (PT) [2], [6].

Johan Ericsson KTH 16/36



Implementation of Kernels Methods

• We selected and implemented a selection of existing gamma generation
algorithm in CUDA as __device__ kernels

• Benchmarking class was written using C++ templates with the device kernel
passed as a template parameter

• Flexibility in selecting kernel to benchmark without the overhead of any runtime
dispatch.

• The gamma generation benchmark class use persistent threads (PT) [2], [6].

Johan Ericsson KTH 16/36



Selected Kernels Methods

We selected 5 kernels that we believe can be be efficiently implemented on the GPU:
• Best (XG) [3]

• Cheng (GA) [4]

• Cheng-Feast (GMK3) [5]

• Ahrens-Dieter (GC) [1]

• Marsaglia-Tsang [7]

The first four are published in the 1970s and Marsaglia-Tsang in 2000. Their
measurements are on ∼ 50 year old computer hardware!

Johan Ericsson KTH 17/36



Selected Kernels Methods

We selected 5 kernels that we believe can be be efficiently implemented on the GPU:
• Best (XG) [3]

• Cheng (GA) [4]

• Cheng-Feast (GMK3) [5]

• Ahrens-Dieter (GC) [1]

• Marsaglia-Tsang [7]
The first four are published in the 1970s and Marsaglia-Tsang in 2000. Their
measurements are on ∼ 50 year old computer hardware!

Johan Ericsson KTH 17/36



Verification of implementations Methods

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations
are correct and generate gamma distributed output.

• We know mathematically that the output should be gamma distributed.

• Output quality depends on the uniform RNG. CUDAs default uniform RNG was
used: CURAND_RNG_PSEUDO_XORWOW

Johan Ericsson KTH 18/36



Verification of implementations Methods

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations
are correct and generate gamma distributed output.

• We know mathematically that the output should be gamma distributed.

• Output quality depends on the uniform RNG. CUDAs default uniform RNG was
used: CURAND_RNG_PSEUDO_XORWOW

Johan Ericsson KTH 18/36



Verification of implementations Methods

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations
are correct and generate gamma distributed output.

• We know mathematically that the output should be gamma distributed.

• Output quality depends on the uniform RNG. CUDAs default uniform RNG was
used: CURAND_RNG_PSEUDO_XORWOW

Johan Ericsson KTH 18/36



Measurements Methods

• Measured the execution times for each gamma kernel when generating samples
of single precision floating-point numbers.

• Varying sample sizes between 222 ≈ 4 × 106 and 228 ≈ 2.68 × 108.

• The measurements were done for four different values of α = 1.0001, 2, 4, 10

• Warmup iteration + 10 measurements, means are reported in figures with
variance errorbars.

Johan Ericsson KTH 19/36



Measurements Methods

• Measured the execution times for each gamma kernel when generating samples
of single precision floating-point numbers.

• Varying sample sizes between 222 ≈ 4 × 106 and 228 ≈ 2.68 × 108.

• The measurements were done for four different values of α = 1.0001, 2, 4, 10

• Warmup iteration + 10 measurements, means are reported in figures with
variance errorbars.

Johan Ericsson KTH 19/36



Measurements Methods

• Measured the execution times for each gamma kernel when generating samples
of single precision floating-point numbers.

• Varying sample sizes between 222 ≈ 4 × 106 and 228 ≈ 2.68 × 108.

• The measurements were done for four different values of α = 1.0001, 2, 4, 10

• Warmup iteration + 10 measurements, means are reported in figures with
variance errorbars.

Johan Ericsson KTH 19/36



Measurements Methods

• Measured the execution times for each gamma kernel when generating samples
of single precision floating-point numbers.

• Varying sample sizes between 222 ≈ 4 × 106 and 228 ≈ 2.68 × 108.

• The measurements were done for four different values of α = 1.0001, 2, 4, 10

• Warmup iteration + 10 measurements, means are reported in figures with
variance errorbars.

Johan Ericsson KTH 19/36



Experimental Setup Methods

• Linux host running Ubuntu 22.04.3 LTS with linux kernel version
5.15.0-58-generic.

• AMD Ryzen 9 5950X 16-Core CPU with clock frequency 3.4GHz and memory
listed in table 1.

L1d cache 512 KiB
L1i cache 512 KiB
L2 cache 8 MiB
L3 cache 64 MiB
RAM 32 GiB (2x16 GiB)
SSD 1TB

Table: Cache sizes for the AMD 5950X CPU used for benchmarking and installed memory sizes.

Johan Ericsson KTH 20/36



Experimental Setup Methods

• NVIDIA GeForce RTX 4070 GPU

GPU Architecture Ada Lovelace
CUDA Cores 5888
Clock Speed 1.92 GHz

RAM 12 GiB
Memory Interface 192-bit
Memory Bandwidth 504.2 GB/s
L1 Cache Size 192 KiB per SM
L2 Cache Size 36 MiB

Table: Key stats for the NVIDIA GeForce RTX 4070 GPU used for measurements.

Johan Ericsson KTH 21/36



Results



Verification of Output Results

Algorithm α = 1.0001 α = 2.0 α = 10.0
𝐷𝑛 p-value 𝐷𝑛 p-value 𝐷𝑛 p-value

Cheng-Feast (GKM3) 0.0012 0.11 0.00094 0.34 0.0015 0.018
Marsaglia-Tsang 0.00059 0.88 0.00069 0.72 0.00072 0.67
Cheng (GA) 0.00067 0.76 0.00052 0.95 0.00074 0.64
Best (XG) 0.00069 0.73 0.00059 0.87 0.00062 0.84
Ahrens-Dieter (GC) 0.00063 0.83 0.00059 0.88 0.00064 0.80

Table: KS-test results of the algorithms for selected values of α.

The p-values suggest that all algorithms produce gamma distributed output, except
Cheng-Feast (GKM3) for high α which is much worse than the other algorithms.

Johan Ericsson KTH 23/36



Verification of Output Results

Algorithm α = 1.0001 α = 2.0 α = 10.0
𝐷𝑛 p-value 𝐷𝑛 p-value 𝐷𝑛 p-value

Cheng-Feast (GKM3) 0.0012 0.11 0.00094 0.34 0.0015 0.018
Marsaglia-Tsang 0.00059 0.88 0.00069 0.72 0.00072 0.67
Cheng (GA) 0.00067 0.76 0.00052 0.95 0.00074 0.64
Best (XG) 0.00069 0.73 0.00059 0.87 0.00062 0.84
Ahrens-Dieter (GC) 0.00063 0.83 0.00059 0.88 0.00064 0.80

Table: KS-test results of the algorithms for selected values of α.

The p-values suggest that all algorithms produce gamma distributed output, except
Cheng-Feast (GKM3) for high α which is much worse than the other algorithms.

Johan Ericsson KTH 23/36



Verification of Output Results

0 2 4 6

x

0.00

0.25

0.50

0.75

1.00

D
en

si
ty

α =1.0001
p.d.f. f (x) of Γ(α, 1)

Cheng-Feast (GKM3)

Figure: Histogram of output of Cheng-Feast
(GKM3) 106 samples.

0 10 20

x

0.00

0.05

0.10

D
en

si
ty

α =10.0
p.d.f. f (x) of Γ(α, 1)

Cheng-Feast (GKM3)

Figure: Histogram of output of Cheng-Feast
(GKM3) 106 samples.

Johan Ericsson KTH 24/36



Execution times α = 1.0001 Results

0.0 0.5 1.0 1.5 2.0 2.5
Samples generated ×108

0

25

50

75

100

125

150

Ti
m

e
(m

ill
is

ec
on

ds
)

α = 1.0001
Marsaglia-Tsang
Ahrens-Dieter (GC)
Cheng (GA)
Cheng-Feast (GKM3)
Best (XG)

Figure: Measured execution times for α = 1.0001.

0.0 0.5 1.0 1.5 2.0 2.5
Samples generated ×108

0

5

10

15

20

25

30

Ti
m

e
(m

ill
is

ec
on

ds
)

α = 1.0001
Marsaglia-Tsang
Ahrens-Dieter (GC)
Cheng (GA)
Cheng-Feast (GKM3)
cuRAND normal (device API)

Figure: Measured execution times for the best
kernels α = 1.0001 and with cuRAND normal.

Johan Ericsson KTH 25/36



Execution times α = 10 Results

0.0 0.5 1.0 1.5 2.0 2.5
Samples generated ×108

0

20

40

60

80

100

120

Ti
m

e
(m

ill
is

ec
on

ds
)

α = 10
Marsaglia-Tsang
Ahrens-Dieter (GC)
Cheng (GA)
Cheng-Feast (GKM3)
Best (XG)

Figure: Measured execution times for α = 10.

0.0 0.5 1.0 1.5 2.0 2.5
Samples generated ×108

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ti
m

e
(m

ill
is

ec
on

ds
)

α = 10
Marsaglia-Tsang
Ahrens-Dieter (GC)
Cheng (GA)
cuRAND normal (device API)

Figure: Measured execution times for the best
kernels α = 10 and with cuRAND normal.

Johan Ericsson KTH 26/36



Speedups Results

4.2e+06 7.1e+07 1.4e+08 2.1e+08
Samples Generated

0

100

200

300

400

500

600

700

800

Sp
ee

du
p

Speedup over C++ STL (single thread) α =1.0001
Cheng (GA)
Best (XG)

Marsaglia-Tsang
Ahrens-Dieter (GC)

Cheng-Feast (GKM3)

Figure: Speedup compared to CPU single thread
(C++ STL) for α = 1.0001.

4.2e+06 7.1e+07 1.4e+08 2.1e+08
Samples Generated

0

200

400

600

800

1000

1200

1400

Sp
ee

du
p

Speedup over C++ STL (single thread) α =10
Cheng (GA)
Best (XG)

Marsaglia-Tsang
Ahrens-Dieter (GC)

Cheng-Feast (GKM3)

Figure: Speedup compared to CPU single thread
(C++ STL) for α = 10.

Johan Ericsson KTH 27/36



Conclusions



Conclusions Conclusions

• It is possible to efficiently generate gamma random numbers on GPUs.

• The best algorithm is Cheng (GA) [4] which perform very well on the GPU across
all α > 1.

• (Not often mentioned in the literature, which is focused on CPUs).

• Achieves > 1000× speedup compared to CPU for α > 2.

• Easy to implement ∼ 25 lines of code.

• Shows that rejection sampling does not have to be ”bad” on GPUs.

Johan Ericsson KTH 29/36



Conclusions Conclusions

• It is possible to efficiently generate gamma random numbers on GPUs.

• The best algorithm is Cheng (GA) [4] which perform very well on the GPU across
all α > 1.

• (Not often mentioned in the literature, which is focused on CPUs).

• Achieves > 1000× speedup compared to CPU for α > 2.

• Easy to implement ∼ 25 lines of code.

• Shows that rejection sampling does not have to be ”bad” on GPUs.

Johan Ericsson KTH 29/36



Conclusions Conclusions

• It is possible to efficiently generate gamma random numbers on GPUs.

• The best algorithm is Cheng (GA) [4] which perform very well on the GPU across
all α > 1.

• (Not often mentioned in the literature, which is focused on CPUs).

• Achieves > 1000× speedup compared to CPU for α > 2.

• Easy to implement ∼ 25 lines of code.

• Shows that rejection sampling does not have to be ”bad” on GPUs.

Johan Ericsson KTH 29/36



Conclusions Conclusions

• It is possible to efficiently generate gamma random numbers on GPUs.

• The best algorithm is Cheng (GA) [4] which perform very well on the GPU across
all α > 1.

• (Not often mentioned in the literature, which is focused on CPUs).

• Achieves > 1000× speedup compared to CPU for α > 2.

• Easy to implement ∼ 25 lines of code.

• Shows that rejection sampling does not have to be ”bad” on GPUs.

Johan Ericsson KTH 29/36



Conclusions Conclusions

• It is possible to efficiently generate gamma random numbers on GPUs.

• The best algorithm is Cheng (GA) [4] which perform very well on the GPU across
all α > 1.

• (Not often mentioned in the literature, which is focused on CPUs).

• Achieves > 1000× speedup compared to CPU for α > 2.

• Easy to implement ∼ 25 lines of code.

• Shows that rejection sampling does not have to be ”bad” on GPUs.

Johan Ericsson KTH 29/36



Conclusions Conclusions

• It is possible to efficiently generate gamma random numbers on GPUs.

• The best algorithm is Cheng (GA) [4] which perform very well on the GPU across
all α > 1.

• (Not often mentioned in the literature, which is focused on CPUs).

• Achieves > 1000× speedup compared to CPU for α > 2.

• Easy to implement ∼ 25 lines of code.

• Shows that rejection sampling does not have to be ”bad” on GPUs.

Johan Ericsson KTH 29/36



Future Work Conclusions

• The best algorithms for generating random numbers from other complex
distributions on GPUs are not known.

• A natural question is whether the performance comparison on CPUs are still
valid?

• The same work can be done for modern CPUs.

Johan Ericsson KTH 30/36



Future Work Conclusions

• The best algorithms for generating random numbers from other complex
distributions on GPUs are not known.

• A natural question is whether the performance comparison on CPUs are still
valid?

• The same work can be done for modern CPUs.

Johan Ericsson KTH 30/36



Future Work Conclusions

• The best algorithms for generating random numbers from other complex
distributions on GPUs are not known.

• A natural question is whether the performance comparison on CPUs are still
valid?

• The same work can be done for modern CPUs.

Johan Ericsson KTH 30/36



Questions Conclusions

Feel free to ask questions!

Johan Ericsson KTH 31/36



References I Conclusions

[1] Joachim H. Ahrens and Ulrich Dieter. “Computer methods for sampling from
gamma, beta, poisson and bionomial distributions”. In: Computing 12.3 (1974),
pp. 223–246. DOI: 10.1007/BF02293108. URL:
https://doi.org/10.1007/BF02293108.

[2] Timo Aila and Samuli Laine. “Understanding the efficiency of ray traversal on
GPUs”. In: Proceedings of the Conference on High Performance Graphics 2009.
HPG ’09. New Orleans, Louisiana: Association for Computing Machinery, 2009,
pp. 145–149. ISBN: 9781605586038. DOI: 10.1145/1572769.1572792. URL:
https://doi.org/10.1145/1572769.1572792.

Johan Ericsson KTH 32/36

https://doi.org/10.1007/BF02293108
https://doi.org/10.1007/BF02293108
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792


References II Conclusions

[3] D. J. Best. “Letters to the Editors”. eng. In: Journal of the Royal Statistical
Society: Series C (Applied Statistics) 27.2 (1978), pp. 181–182. ISSN:
0035-9254. DOI: 10.1111/j.1467-9876.1978.tb01041.x. URL:
https://doi.org/10.1111/j.1467-9876.1978.tb01041.x.

[4] R. C. H. Cheng. “The Generation of Gamma Variables with Non-Integral Shape
Parameter”. In: Journal of the Royal Statistical Society. Series C (Applied
Statistics) 26.1 (1977), pp. 71–75. URL:
http://www.jstor.org/stable/2346871 (visited on 05/17/2024).

Johan Ericsson KTH 33/36

https://doi.org/10.1111/j.1467-9876.1978.tb01041.x
https://doi.org/10.1111/j.1467-9876.1978.tb01041.x
http://www.jstor.org/stable/2346871


References III Conclusions

[5] R. C. H. Cheng and G. M. Feast. “Some Simple Gamma Variate Generators”. In:
Journal of the Royal Statistical Society. Series C (Applied Statistics) 28.3
(1979), pp. 290–295. DOI: 10.2307/2347200. URL:
https://doi.org/10.2307/2347200.

[6] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. “A study of Persistent Threads
style GPU programming for GPGPU workloads”. In: 2012 Innovative Parallel
Computing (InPar). 2012, pp. 1–14. DOI: 10.1109/InPar.2012.6339596.

[7] George Marsaglia and Wai Wan Tsang. “A simple method for generating gamma
variables”. In: ACM Trans. Math. Softw. 26.3 (2000), pp. 363–372. DOI:
10.1145/358407.358414. URL: https://doi.org/10.1145/358407.358414.

Johan Ericsson KTH 34/36

https://doi.org/10.2307/2347200
https://doi.org/10.2307/2347200
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1145/358407.358414
https://doi.org/10.1145/358407.358414


References IV Conclusions

[8] Gavin Ridley and Benoit Forget. “A simple method for rejection sampling
efficiency improvement on SIMT architectures”. In: Stat. Comput. 31.3 (2021),
p. 30. DOI: 10.1007/S11222-021-10003-Z. URL:
https://doi.org/10.1007/s11222-021-10003-z.

Johan Ericsson KTH 35/36

https://doi.org/10.1007/S11222-021-10003-Z
https://doi.org/10.1007/s11222-021-10003-z



	Introduction
	Background
	Methods
	Results
	Conclusions
	References

