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Introduction



Motivation Introduction

• Stochastic simulation techniques play an important role in modern society with a
diverse range of applications:

1. telecommunication systems

2. nuclear physics

3. weather forecasting and climate modeling

• Monte Carlo Simulations has been used since the Manhattan Project.

• Require that we can simulate random variables efficiently!
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Changing Compute Landscape Introduction

• Graphical processing units (GPUs) and other accelerators are becoming more
important.

• The computer architecture of GPUs differ from that of classical central
processing units (CPUs).

• Algorithms that perform well on CPUs may not perform well on GPUs and vice
versa.

• Challenges when implementing code that require random numbers on GPUs:

1. Poor library support for complex distributions (e.g. gamma)

2. Much of the existing literature is focused on CPUs and not GPUs.
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In this work we Introduction

• We present the first comparison of the performance of gamma random number
generation algorithms on GPUs.

• We describe the implementation and design of efficient random number
generation kernels on GPUs.

• Our results show that a 1000× speedup can be achieved when generating
gamma random numbers on a consumer grade GPU compared to on a CPU
(single thread).
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Background



Gamma Distribution Background

Let α,β > 0 be real numbers, then the
gamma distribution Γ(α,β) has p.d.f.

𝑓(𝑥) = {
1

Γ(α)βα𝑥
α−1𝑒−𝑥/β, 𝑥 > 0,

0, 𝑥 ≤ 0.

The parameters are called: shape (α) and
scale (β).
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Figure: Gamma Distribution for different shape and
scale parameters.
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Gamma Distribution Background

1. If 𝑋 ∼ Γ(1,β), then 𝑋 ∼ Exp(λ) with λ = 1
β
.

2. If 𝑋𝑖 ∼ Γ(α𝑖,β), then
𝑐𝑋1 + ⋯ + 𝑐𝑋𝑛 ∈ Γ(α1 + ⋯ + α𝑛, 𝑐β).

3. If 𝑌 ∼ Γ(α + 1, 1) for some α > 0 and 𝑈 ∼ 𝑈(0, 1) be independent random variables,
then

𝑋 = 𝑌𝑈1/α ∼ Γ(α, 1).

Item 2 and 3 above implies that Γ(α, 1) (α > 1) variates can be cheaply transformed to
Γ(α,β) variates for arbitrary α,β. Hence, our focus is on Γ(α, 1) generators for α > 1.
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Random Number Generation Background

• There are two types of random number generators (RNGs) uniform and
non-uniform.

• Uniform RNGs produce uniform 𝑈(0, 1) random samples (random bits).

• Non-uniform RNGs use uniform RNGs for randomness combined with
mathematical transforms to generate samples from other distributions.

• Only one method is used for gamma generation: rejection sampling.
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GPU Architecture Background

• At the highest level a GPU consists of several streaming multiprocessors (SMs).
• The SMs have a single instruction, multiple threads (SIMT) design: many
compute cores each have their own registers and but are collected in groups
which share the same instruction control unit.

SM

L1 cache

… …

SM

L1 cache

…

CUDA cores

Figure: Illustration of GPU architecture showing SMs, CUDA cores, and L1 cache.
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Rejection Sampling Background

Algorithm 1: Rejection Sampling
Data: Desired distribution 𝑓, proposal distribution 𝑔, constant 𝑀
Result: Sample from distribution 𝑋
Input: Initialize 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 ← false

1 while not accept do
2 Sample 𝑦 ∼ 𝑌
3 Sample 𝑢 ∼ 𝑈(0, 1)
4 if 𝑢 < 𝑓(𝑦)

𝑀⋅𝑔(𝑦) then

5 𝑎𝑐𝑐𝑒𝑝𝑡 ← true
6 end
7 return 𝑦
8 end
Johan Ericsson KTH 12/36



Rejection Sampling on GPUs Background

Large difference between CPUs and GPUs when it comes to efficient rejection
samling:

• Warps and SIMT architecture leads to different rejection distributions (see [8]).

Figure: Visualization of warp divergence. The arrow indicates that the thread is doing work and the red
square indicates that the thread is idle.
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Rejection Sampling on GPUs Background

Analytical formula for the
probability

𝑃(𝑁 = 𝑘) = (1 − ρ𝑛)𝑡−(1 − ρ𝑛−1)𝑡 ,

where:
• 𝑁 - number iterations
until accept

• 𝑡 - warp size (32 for
NVIDIA GPUs)

• ρ - rejection
probability 2 4 6 8 10

iterations k
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Methods



Implementation of Kernels Methods

• We selected and implemented a selection of existing gamma generation
algorithm in CUDA as __device__ kernels

• Benchmarking class was written using C++ templates with the device kernel
passed as a template parameter

• Flexibility in selecting kernel to benchmark without the overhead of any runtime
dispatch.

• The gamma generation benchmark class use persistent threads (PT) [2], [6].
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Selected Kernels Methods

We selected 5 kernels that we believe can be be efficiently implemented on the GPU:
• Best (XG) [3]

• Cheng (GA) [4]

• Cheng-Feast (GMK3) [5]

• Ahrens-Dieter (GC) [1]

• Marsaglia-Tsang [7]

The first four are published in the 1970s and Marsaglia-Tsang in 2000. Their
measurements are on ∼ 50 year old computer hardware!
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Verification of implementations Methods

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations
are correct and generate gamma distributed output.

• We know mathematically that the output should be gamma distributed.

• Output quality depends on the uniform RNG. CUDAs default uniform RNG was
used: CURAND_RNG_PSEUDO_XORWOW
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Measurements Methods

• Measured the execution times for each gamma kernel when generating samples
of single precision floating-point numbers.

• Varying sample sizes between 222 ≈ 4 × 106 and 228 ≈ 2.68 × 108.

• The measurements were done for four different values of α = 1.0001, 2, 4, 10

• Warmup iteration + 10 measurements, means are reported in figures with
variance errorbars.
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Experimental Setup Methods

• Linux host running Ubuntu 22.04.3 LTS with linux kernel version
5.15.0-58-generic.

• AMD Ryzen 9 5950X 16-Core CPU with clock frequency 3.4GHz and memory
listed in table 1.

L1d cache 512 KiB
L1i cache 512 KiB
L2 cache 8 MiB
L3 cache 64 MiB
RAM 32 GiB (2x16 GiB)
SSD 1TB

Table: Cache sizes for the AMD 5950X CPU used for benchmarking and installed memory sizes.
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Experimental Setup Methods

• NVIDIA GeForce RTX 4070 GPU

GPU Architecture Ada Lovelace
CUDA Cores 5888
Clock Speed 1.92 GHz

RAM 12 GiB
Memory Interface 192-bit
Memory Bandwidth 504.2 GB/s
L1 Cache Size 192 KiB per SM
L2 Cache Size 36 MiB

Table: Key stats for the NVIDIA GeForce RTX 4070 GPU used for measurements.
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Results



Verification of Output Results

Algorithm α = 1.0001 α = 2.0 α = 10.0
𝐷𝑛 p-value 𝐷𝑛 p-value 𝐷𝑛 p-value

Cheng-Feast (GKM3) 0.0012 0.11 0.00094 0.34 0.0015 0.018
Marsaglia-Tsang 0.00059 0.88 0.00069 0.72 0.00072 0.67
Cheng (GA) 0.00067 0.76 0.00052 0.95 0.00074 0.64
Best (XG) 0.00069 0.73 0.00059 0.87 0.00062 0.84
Ahrens-Dieter (GC) 0.00063 0.83 0.00059 0.88 0.00064 0.80

Table: KS-test results of the algorithms for selected values of α.

The p-values suggest that all algorithms produce gamma distributed output, except
Cheng-Feast (GKM3) for high α which is much worse than the other algorithms.
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Verification of Output Results
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Figure: Histogram of output of Cheng-Feast
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Execution times α = 1.0001 Results
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Figure: Measured execution times for α = 1.0001.
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Execution times α = 10 Results
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Speedups Results
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Figure: Speedup compared to CPU single thread
(C++ STL) for α = 1.0001.
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Conclusions Conclusions

• It is possible to efficiently generate gamma random numbers on GPUs.

• The best algorithm is Cheng (GA) [4] which perform very well on the GPU across
all α > 1.

• (Not often mentioned in the literature, which is focused on CPUs).

• Achieves > 1000× speedup compared to CPU for α > 2.

• Easy to implement ∼ 25 lines of code.

• Shows that rejection sampling does not have to be ”bad” on GPUs.
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Future Work Conclusions

• The best algorithms for generating random numbers from other complex
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Questions Conclusions

Feel free to ask questions!
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