

Gamma Random Number Generation on GPUs using CUDA

Johan Ericsson June 19, 2024 — KTH Royal Institute of Technology

- 1. [Introduction](#page-2-0)
- 2. [Background](#page-14-0)
- 3. [Methods](#page-30-0)
- 4. [Results](#page-46-0)
- 5. [Conclusions](#page-53-0)

• Stochastic simulation techniques play an important role in modern society with a diverse range of applications:

- Stochastic simulation techniques play an important role in modern society with a diverse range of applications:
	- 1. telecommunication systems
	- 2. nuclear physics
	- 3. weather forecasting and climate modeling

- Stochastic simulation techniques play an important role in modern society with a diverse range of applications:
	- 1. telecommunication systems
	- 2. nuclear physics
	- 3. weather forecasting and climate modeling
- Monte Carlo Simulations has been used since the Manhattan Project.

- Stochastic simulation techniques play an important role in modern society with a diverse range of applications:
	- 1. telecommunication systems
	- 2. nuclear physics
	- 3. weather forecasting and climate modeling
- Monte Carlo Simulations has been used since the Manhattan Project.
- Require that we can simulate random variables efficiently!

Changing Compute Landscape **[Introduction](#page-2-0)**

• Graphical processing units (GPUs) and other accelerators are becoming more important.

- Graphical processing units (GPUs) and other accelerators are becoming more important.
- The computer architecture of GPUs differ from that of classical central processing units (CPUs).

- Graphical processing units (GPUs) and other accelerators are becoming more important.
- The computer architecture of GPUs differ from that of classical central processing units (CPUs).
- Algorithms that perform well on CPUs may not perform well on GPUs and vice versa.

- Graphical processing units (GPUs) and other accelerators are becoming more important.
- The computer architecture of GPUs differ from that of classical central processing units (CPUs).
- Algorithms that perform well on CPUs may not perform well on GPUs and vice versa.
- Challenges when implementing code that require random numbers on GPUs:
	- 1. Poor library support for complex distributions (e.g. gamma)
	- 2. Much of the existing literature is focused on CPUs and not GPUs.

• We present the first comparison of the performance of gamma random number generation algorithms on GPUs.

• We present the first comparison of the performance of gamma random number generation algorithms on GPUs.

• We describe the implementation and design of efficient random number generation kernels on GPUs.

• We present the first comparison of the performance of gamma random number generation algorithms on GPUs.

• We describe the implementation and design of efficient random number generation kernels on GPUs.

• Our results show that a 1000 \times speedup can be achieved when generating gamma random numbers on a consumer grade GPU compared to on a CPU (single thread).

Let $\alpha, \beta > 0$ be real numbers, then the *gamma distribution* Γ(*α*, *β*) has p.d.f.

$$
f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}, & x > 0, \\ 0, & x \leq 0. \end{cases}
$$

The parameters are called: *shape* (*α*) and *scale* (*β*).

Let $\alpha, \beta > 0$ be real numbers, then the *gamma distribution* Γ(*α*, *β*) has p.d.f.

$$
f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}, & x > 0, \\ 0, & x \leq 0. \end{cases}
$$

The parameters are called: *shape* (*α*) and *scale* (*β*).

Figure: Gamma Distribution for different shape and scale parameters.

1. If $X \sim \Gamma(1, \beta)$, then $X \sim \text{Exp}(\lambda)$ with $\lambda = \frac{1}{\beta}$ *β* .

1. If $X \sim \Gamma(1, \beta)$, then $X \sim \text{Exp}(\lambda)$ with $\lambda = \frac{1}{\beta}$ *β* .

2. If *X*_i ∼ Γ(α_i, β), then

 $cX_1 + \cdots + cX_n \in \Gamma(\alpha_1 + \cdots + \alpha_n, c\beta).$

1. If $X \sim \Gamma(1, \beta)$, then $X \sim \text{Exp}(\lambda)$ with $\lambda = \frac{1}{\beta}$ *β* . 2. If *X*_i ∼ Γ(α_i, β), then

$$
cX_1 + \dots + cX_n \in \Gamma(\alpha_1 + \dots + \alpha_n, c\beta).
$$

3. If $Y \sim \Gamma(\alpha + 1, 1)$ for some $\alpha > 0$ and $U \sim U(0, 1)$ be independent random variables, then

$$
X = YU^{1/\alpha} \sim \Gamma(\alpha, 1).
$$

Item 2 and 3 above implies that Γ(*α*, 1) (*α* > 1) variates can be cheaply transformed to Γ(*α*, *β*) variates for arbitrary *α*, *β*. Hence, our focus is on Γ(*α*, 1) generators for *α* > 1.

• There are two types of random number generators (RNGs) uniform and non-uniform.

- There are two types of random number generators (RNGs) uniform and non-uniform.
- Uniform RNGs produce uniform $U(0, 1)$ random samples (random bits).

- There are two types of random number generators (RNGs) uniform and non-uniform.
- Uniform RNGs produce uniform $U(0, 1)$ random samples (random bits).
- Non-uniform RNGs use uniform RNGs for randomness combined with mathematical transforms to generate samples from other distributions.

- There are two types of random number generators (RNGs) uniform and non-uniform.
- Uniform RNGs produce uniform $U(0, 1)$ random samples (random bits).
- Non-uniform RNGs use uniform RNGs for randomness combined with mathematical transforms to generate samples from other distributions.
- Only one method is used for gamma generation: rejection sampling.

- At the highest level a GPU consists of several *streaming multiprocessors (SMs)*.
- The SMs have a *single instruction, multiple threads (SIMT)* design: many compute cores each have their own registers and but are collected in groups which share the same instruction control unit.

Figure: Illustration of GPU architecture showing SMs, CUDA cores, and L1 cache.

Algorithm 1: Rejection Sampling

Data: Desired distribution f, proposal distribution q, constant M

Result: Sample from distribution X

Input: Initialize $accepted \leftarrow false$

- **¹ while** *not accept* **do**
- **2** Sample **y** ∼ Y
- **3** Sample $u \sim U(0, 1)$
- **4** $\left| \begin{array}{c} \textbf{if} \,\, u < \frac{f(y)}{M \cdot g(y)} \,\, \textbf{then} \end{array} \right.$
- **5** \vert **accept** \leftarrow true
- **⁶ end**
- **⁷ return**
- **⁸ end**

Large difference between CPUs and GPUs when it comes to efficient rejection samling:

Large difference between CPUs and GPUs when it comes to efficient rejection samling:

• Warps and SIMT architecture leads to different rejection distributions (see [\[8\]](#page-67-0)).

Large difference between CPUs and GPUs when it comes to efficient rejection samling:

• Warps and SIMT architecture leads to different rejection distributions (see [\[8\]](#page-67-0)).

Figure: Visualization of warp divergence. The arrow indicates that the thread is doing work and the red square indicates that the thread is idle.

Analytical formula for the probability

$$
P(N = k) = (1 - \rho^n)^t - (1 - \rho^{n-1})^t,
$$

where:

- \bullet N number iterations until accept
- \cdot t warp size (32 for NVIDIA GPUs)
- *ρ* rejection probability

[Methods](#page-30-0)

• We selected and implemented a selection of existing gamma generation algorithm in CUDA as __device__ kernels

- We selected and implemented a selection of existing gamma generation algorithm in CUDA as __device__ kernels
- Benchmarking class was written using C++ templates with the device kernel passed as a template parameter

- We selected and implemented a selection of existing gamma generation algorithm in CUDA as __device__ kernels
- Benchmarking class was written using C++ templates with the device kernel passed as a template parameter
- Flexibility in selecting kernel to benchmark without the overhead of any runtime dispatch.

- We selected and implemented a selection of existing gamma generation algorithm in CUDA as device kernels
- Benchmarking class was written using C++ templates with the device kernel passed as a template parameter
- Flexibility in selecting kernel to benchmark without the overhead of any runtime dispatch.
- The gamma generation benchmark class use persistent threads (PT) [\[2\]](#page-64-0), [\[6\]](#page-66-0).

We selected 5 kernels that we believe can be be efficiently implemented on the GPU:

- Best (XG) [\[3\]](#page-65-0)
- Cheng (GA) [\[4\]](#page-65-1)
- Cheng-Feast (GMK3) [\[5\]](#page-66-1)
- Ahrens-Dieter (GC) [\[1\]](#page-64-1)
- Marsaglia-Tsang [\[7\]](#page-66-2)

We selected 5 kernels that we believe can be be efficiently implemented on the GPU:

- Best (XG) [\[3\]](#page-65-0)
- Cheng (GA) $[4]$
- Cheng-Feast (GMK3) [\[5\]](#page-66-1)
- Ahrens-Dieter (GC) [\[1\]](#page-64-1)
- Marsaglia-Tsang [\[7\]](#page-66-2)

The first four are published in the 1970s and Marsaglia-Tsang in 2000. Their measurements are on ∼ 50 year old computer hardware!

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations are correct and generate gamma distributed output.

Verification of implementations Theorem [Methods](#page-30-0)

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations are correct and generate gamma distributed output.

• We know mathematically that the output should be gamma distributed.

Verification of implementations The [Methods](#page-30-0)

• Used a Kolmogorov-Smirnov test (KS-test) to verify that the implementations are correct and generate gamma distributed output.

• We know mathematically that the output should be gamma distributed.

• Output quality depends on the uniform RNG. CUDAs default uniform RNG was used: CURAND_RNG_PSEUDO_XORWOW

• Measured the execution times for each gamma kernel when generating samples of single precision floating-point numbers.

- Measured the execution times for each gamma kernel when generating samples of single precision floating-point numbers.
- Varying sample sizes between 2 22 \approx 4 \times 10 6 and 2 28 \approx 2.68 \times 10 8 .

- Measured the execution times for each gamma kernel when generating samples of single precision floating-point numbers.
- Varying sample sizes between 2 22 \approx 4 \times 10 6 and 2 28 \approx 2.68 \times 10 8 .
- The measurements were done for four different values of *α* = 1.0001, 2, 4, 10

- Measured the execution times for each gamma kernel when generating samples of single precision floating-point numbers.
- Varying sample sizes between 2 22 \approx 4 \times 10 6 and 2 28 \approx 2.68 \times 10 8 .
- The measurements were done for four different values of *α* = 1.0001, 2, 4, 10
- Warmup iteration + 10 measurements, means are reported in figures with variance errorbars.

- Linux host running Ubuntu 22.04.3 LTS with linux kernel version 5.15.0-58-generic.
- AMD Ryzen 9 5950X 16-Core CPU with clock frequency 3.4GHz and memory listed in table [1.](#page-44-0)

Table: Cache sizes for the AMD 5950X CPU used for benchmarking and installed memory sizes.

• NVIDIA GeForce RTX 4070 GPU

Table: Key stats for the NVIDIA GeForce RTX 4070 GPU used for measurements.

[Results](#page-46-0)

Verification of Output **[Results](#page-46-0)** Results

Table: KS-test results of the algorithms for selected values of *α*.

Verification of Output [Results](#page-46-0) Results

Table: KS-test results of the algorithms for selected values of *α*.

The p-values suggest that all algorithms produce gamma distributed output, except Cheng-Feast (GKM3) for high *α* which is much worse than the other algorithms.

Verification of Output **[Results](#page-46-0)** Results

Figure: Histogram of output of Cheng-Feast $(GKM3)$ 10⁶ samples.

Johan Ericsson KTH 24/36

Figure: Histogram of output of Cheng-Feast $(GKM3)$ 10⁶ samples.

Execution times $\alpha = 1.0001$ [Results](#page-46-0)

 $\alpha = 1.0001$

Marsaglia-Tsang Ahrens-Dieter (GC) Cheng (GA) Cheng-Feast (GKM3) cuRAND normal (device API)

Figure: Measured execution times for *α* = 1.0001.

Figure: Measured execution times for the best kernels α = 1.0001 and with cuRAND normal.

Johan Ericsson KTH 25/36

10

15

 $20¹$

25

30

Execution times $\alpha = 10$ [Results](#page-46-0)

Figure: Measured execution times for *α* = 10.

Figure: Measured execution times for the best kernels α = 10 and with cuRAND normal.

0.0 0.5 1.0 1.5 2.0 2.5

 $\alpha = 10$

Marsaglia-Tsang Ahrens-Dieter (GC) Cheng (GA)

cuRAND normal (device API)

Samples generated $\times 10^8$

Johan Ericsson KTH 26/36

0.0

2.5

5.0

7.5

Time (milliseconds)

Time (milliseconds)

10.0

12.5

15.0

 \Box Cheng-Feast (GKM3)

Figure: Speedup compared to CPU single thread (C++ STL) for *α* = 10.

4.2e+06 7.1e+07 1.4e+08 2.1e+08 Samples Generated

Speedup over C++ STL (single thread) $\alpha = 10$

Marsaglia-Tsang Ahrens-Dieter (GC)

 $\overline{0}$

200

400

600

800

Speedup

1000

1200

 $1400 -$

Cheng (GA) Best (XG)

Contract

[Conclusions](#page-53-0)

• It is possible to efficiently generate gamma random numbers on GPUs.

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [\[4\]](#page-65-1) which perform very well on the GPU across all *α* > 1.

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [\[4\]](#page-65-1) which perform very well on the GPU across all $\alpha > 1$.
	- (Not often mentioned in the literature, which is focused on CPUs).

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [\[4\]](#page-65-1) which perform very well on the GPU across all $\alpha > 1$.
	- (Not often mentioned in the literature, which is focused on CPUs).
	- Achieves > 1000× speedup compared to CPU for *α* > 2.

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [\[4\]](#page-65-1) which perform very well on the GPU across all *α* > 1.
	- (Not often mentioned in the literature, which is focused on CPUs).
	- Achieves > 1000× speedup compared to CPU for *α* > 2.
	- Easy to implement ∼ 25 lines of code.

- It is possible to efficiently generate gamma random numbers on GPUs.
- The best algorithm is Cheng (GA) [\[4\]](#page-65-1) which perform very well on the GPU across all *α* > 1.
	- (Not often mentioned in the literature, which is focused on CPUs).
	- Achieves > 1000× speedup compared to CPU for *α* > 2.
	- Easy to implement ∼ 25 lines of code.
- Shows that rejection sampling does not have to be "bad" on GPUs.

• The best algorithms for generating random numbers from other complex distributions on GPUs are not known.

• The best algorithms for generating random numbers from other complex distributions on GPUs are not known.

• A natural question is whether the performance comparison on CPUs are still valid?

• The best algorithms for generating random numbers from other complex distributions on GPUs are not known.

• A natural question is whether the performance comparison on CPUs are still valid?

• The same work can be done for modern CPUs.

Feel free to ask questions!

- [1] Joachim H. Ahrens and Ulrich Dieter. "Computer methods for sampling from gamma, beta, poisson and bionomial distributions". In: *Computing* 12.3 (1974), pp. 223–246. DOI: [10.1007/BF02293108](https://doi.org/10.1007/BF02293108). URL: <https://doi.org/10.1007/BF02293108>.
- [2] Timo Aila and Samuli Laine. "Understanding the efficiency of ray traversal on GPUs". In: *Proceedings of the Conference on High Performance Graphics 2009*. HPG '09. New Orleans, Louisiana: Association for Computing Machinery, 2009, pp. 145–149. ISBN: 9781605586038. DOI: [10.1145/1572769.1572792](https://doi.org/10.1145/1572769.1572792). URL: <https://doi.org/10.1145/1572769.1572792>.

- [3] D. J. Best. "Letters to the Editors". eng. In: *Journal of the Royal Statistical Society: Series C (Applied Statistics)* 27.2 (1978), pp. 181–182. ISSN: 0035-9254. DOI: [10.1111/j.1467-9876.1978.tb01041.x](https://doi.org/10.1111/j.1467-9876.1978.tb01041.x). URL: <https://doi.org/10.1111/j.1467-9876.1978.tb01041.x>.
- [4] R. C. H. Cheng. "The Generation of Gamma Variables with Non-Integral Shape Parameter". In: *Journal of the Royal Statistical Society. Series C (Applied Statistics)* 26.1 (1977), pp. 71–75. URL:

<http://www.jstor.org/stable/2346871> (visited on 05/17/2024).

- [5] R. C. H. Cheng and G. M. Feast. "Some Simple Gamma Variate Generators". In: *Journal of the Royal Statistical Society. Series C (Applied Statistics)* 28.3 (1979), pp. 290–295. DOI: [10.2307/2347200](https://doi.org/10.2307/2347200). URL: <https://doi.org/10.2307/2347200>.
- [6] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. "A study of Persistent Threads style GPU programming for GPGPU workloads". In: *2012 Innovative Parallel Computing (InPar)*. 2012, pp. 1–14. DOI: [10.1109/InPar.2012.6339596](https://doi.org/10.1109/InPar.2012.6339596).
- [7] George Marsaglia and Wai Wan Tsang. "A simple method for generating gamma variables". In: *ACM Trans. Math. Softw.* 26.3 (2000), pp. 363–372. DOI: [10.1145/358407.358414](https://doi.org/10.1145/358407.358414). URL: <https://doi.org/10.1145/358407.358414>.

[8] Gavin Ridley and Benoit Forget. "A simple method for rejection sampling efficiency improvement on SIMT architectures". In: *Stat. Comput.* 31.3 (2021), p. 30. DOI: [10.1007/S11222-021-10003-Z](https://doi.org/10.1007/S11222-021-10003-Z). URL: <https://doi.org/10.1007/s11222-021-10003-z>.

