
Degree Project in the Field of Technology Engineering Physics and the Main Field of
Study Computer Science

Second cycle, 30 credits

Gamma Random Variable
Generation on GPUs using CUDA

JOHAN ERICSSON





Gamma Random Variable
Generation on GPUs using CUDA

JOHAN ERICSSON

Date: June 14, 2024

Supervisor: Mohit Daga
Examiner: Arvind Kumar

School of Electrical Engineering and Computer Science
Swedish title: Generering av Gammafördelade Slumptal på GPUer genom
CUDA



© 2024 Johan Ericsson



| i

Abstract
We study how pseudo random gamma distributed random variables can be efficiently gener-

ated on graphical processing units. There are many algorithms known today for generating

gamma random variables by means of computation that perform well on central processing

units of classical computers. In the last 20 years, there has been increasing interest in using

graphical processing units and other accelerators to speed up stochastic simulation and

machine learning applications. The difference in architecture between graphical processing

units and traditional central processing units means that algorithms that perform well on

central processing units do not always perform well on graphical processing units. This is

especially true for random number generation algorithms from complex distributions. In this

work, we show that graphical processing units can be used to efficiently simulate random

numbers from a gamma distribution, and that the best performing algorithms for doing so

are different than the best performing algorithms on central processing units.

Keywords: Gamma distribution, Random variable generation, Non-uniform, RNG, GPU,

CUDA
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Sammanfattning
Vi studerar hur gammafördelade slumptal effektivt kan genereras på grafikprocessorer. Det

finns många algoritmer kända idag för att generera gammafördelade stokastiska variabler

och som presterar bra på processorer för klassiska datorer. Under de senaste 20 åren år har

intresset ökat för att använda grafikprocessorer och andra acceleratorer för att accelerera

stokastisk simulering och maskininlärningsapplikationer. Skillnaden i arkitektur mellan

grafikprocessorer och traditionella processorer innebär att algoritmer som presterar väl på

traditionella processorer inte alltid presterar väl på grafiska processorer. Detta gäller särskilt

för algoritmer för att generera stokastiska variabler från komplexa distributioner. I detta

arbete visar vi att grafikprocessorer kan användas för att effektivt simulera slumptal från en

gammafördelning, och att de bäst presterande algoritmerna för att göra det skiljer sig från

de bäst presterande algoritmerna på traditionella processorer.

Nyckelord: Gammafördelningen, Slumptalsgenerering, Icke uniform, RNG, GPU, CUDA
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1 Introduction
Stochastic simulation techniques are fundamental to modern society, with a wide range of

applications such as weather simulations, financial forecasting, computational chemistry

and machine learning, among others. The key assumption behind stochastic simulation is

that we can generate random variables by means of computation. This was done already in

late 1940s as part of the Manhattan Project, when Stanislaw Ulman and John von Neumann

invented the Monte Carlo method. Deterministic algorithms that can be used to generate,

seemingly random, numbers are called pseudo random numbers generators (PRNGs) and the

performance of these algorithms have been studied extensively for classical computers with

central processing units (CPUs).

In the early 2000s, graphical processing units (GPUs) started being used for other computing

purposes than graphics only, and the term GPGPU: general-purpose computation on graphics

hardware was coined. Today GPUs play an important role in the computing landscape and

as of November 2023, 9 out of the top 10 supercomputers of the Top 500 list1 partly consist

of GPUs. The main difference between GPUs and CPUs is that GPUs have a throughput-

oriented architecture whilst CPUs have a latency-oriented architecture. This means that

GPUs excel at highly parallel workflows, with little or no control flow or branching. CPUs

on the other hand are optimized to handle sequential code with possibly complicated control

flow and branching. A consequence of this difference in architecture is that algorithms that

perform well on CPUs may not perform well on GPUs.

When it comes to generating random numbers on GPUs, many of the traditional algorithms

for generating random numbers on CPUs are not viable from a performance perspective. As a

consequence of this, the two leadingGPUmanufacturers’ randomnumber generation libraries

(AMD’s rocRAND library
2
and NVIDIA’s cuRAND library

3
) only provides the functionality

to generate random numbers from five types of distributions: uniform, Poisson, normal, log-

normal, and custom discrete distributions. Many scientific disciplines require the possibility

to sample from other, oftentimes more complex, distributions. One of the most commonly

used distributions among scientific disciplines is the family of gamma distributions. It is

also among the most well-studied distributions from a computer simulation perspective and

a recent survey paper by Luengo [29] gives a good overview of existing algorithms and a

review of their performance on CPUs.

Previous work on random number generation from other distributions has shown that

methods that were previously discarded as suboptimal on CPUs performed much better on

GPUs. Examples of this for uniform generators and the normal distribution can be found in

[14]. These discrepancies in performance between the same algorithm on CPUs and GPUs

are more notable in the context of gamma generators. The reason for this is that the only

methods used for gamma generation today are based on rejection sampling (and variations

thereof), or numerical inversion of the distribution function [29]. The most important factors

for highly performant rejection sampling algorithms on GPUs are very different than those

on CPUs.

Rejection sampling is a commonly used Monte Carlo technique and the performance on

GPUs can be good enough to warrant simulation on GPUs instead of CPUs. Furthermore,

there are techniques that can be used to speed up these algorithms, see for instance [43]. In

1
Top 500 list, ranking the world’s fastest supercomputershttps://www.top500.org/lists/top500/2023/11/

2
ROCm platform version 5.7.1 https://rocm.docs.amd.com/projects/rocRAND/en/docs-5.7.1/index.html

3
CUDA toolkit version 12.3.1 https://docs.nvidia.com/cuda/archive/12.3.1/curand/index.html

https://www.top500.org/lists/top500/2023/11/
https://rocm.docs.amd.com/projects/rocRAND/en/docs-5.7.1/index.html
https://docs.nvidia.com/cuda/archive/12.3.1/curand/index.html
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this thesis, we study the existing algorithms for gamma random variable generation from a

performance perspective on GPUs. We compare the results of the best-performing gamma

generators on GPUs with the gamma generator available in the C++ standard library, and

we show that there exist algorithms that make gamma random variable generation on GPUs

a viable option from a performance perspective.

1.1 Problem Statement
The gamma distribution is an important family of probability distributions that is widely

used in stochastic models, machine learning, and Monte Carlo simulations. Even though

there is a large increase in the use of GPUs for stochastic simulation, and machine learning

workloads, the preferred algorithms for generating gamma random numbers on the GPU

remain unknown. Furthermore, since the majority of algorithms used to generate gamma

random numbers are based on rejection sampling, it is not obvious that generation on GPU

is viable when compared to using traditional CPUs instead.

1.2 Purpose
Themain objective of this thesis is to investigate whether there exists gamma random number

generation algorithms that can be implemented efficiently on GPUs and how these perform

compared to the state-of-the-art gamma generators available for CPUs.

The answer to these questions will be of interest to researchers and professionals in both

academia and industry across a wide range of disciplines where gamma random numbers

are used. Knowing what the best methods for generating gamma random numbers on GPUs

are will help practitioners make well-informed choices on what hardware to use for their

specific purposes. This can help reduce the energy required to perform the computations

and may lead to a reduced carbon footprint and lower costs. Moreover, if the best generator

on GPUs outperforms the best generator on CPUs this opens up the possibility to perform

simulations previously not possible. This can lead to new research in the many disciplines

where gamma random numbers are used in computer simulations.

1.3 Research Methodology
We implement a selection of the existing algorithms for gamma random variable generation

in CUDA and measure the performance of these algorithms while executed on a NVIDIA

GPU. We also compare the time it takes to generate gamma random variables on the GPU

with the time it takes on a CPU. For this we use the routine available to generate gamma

random variables from the C++ standard library. The selected method of research can be

divided into four main components.

1. Algorithm selection.

2. Implementation of selected algorithms in C++ and CUDA.

3. Profiling, timing, and measurements.

4. Analysis of measurements
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The first step consists of a literature review which leads to an informed choice of which

algorithms to select for development and measurement. An important part of this step is

that the selection must be made with the performance characteristics of GPUs in mind and

the main challenge is to not dismiss algorithms that may perform well in this early selection

step.

The second step involves the implementation of the selected algorithms. This step also

includes the implementation of tests for verifying that the algorithms produce gamma

random values. The main challenge here is to implement the algorithms efficiently in

CUDA.

The main part of the third step is the running time measurements of the implemented

algorithms that are used for evaluation. This also includes profiling and optimization of

the kernels which is done to ensure that all algorithms are well implemented and that the

comparisons of timing results can be fair between kernels.

The fourth and final step consists of the analysis of the timing measurements. It includes a

comparison of the performance of the algorithms on GPUs and the reference CPU imple-

mentation. There are many challenges associated with measuring the execution times of

programs on both CPUs and GPUs. It can especially be hard to ensure that the results are

fair between simulations. To reduce the variability we make multiple measurements and

report both the mean and variance of the samples collected.

1.4 Method
The algorithm selection is based on a survey of the existing research literature. The reference

code is implemented in C++ for two major reasons:

1. C++ allows the user to write highly efficient code without high-level overhead, and the

implementations of the C++ STL are generally considered to be of very high standard.

2. CUDA is built on C++ and as such it is possible to reuse common code (e.g. tests,

drivers) between the C++ and CUDA implementations.

Statistical tests for verifying the implementations are written in the Python programming

language, which has a rich collection of scientific libraries. We used the Kolmogorov-Smirnov

(KS) test (see e.g. [18, Section 3.3.1.B]) to verify the output of implemented generators. The

KS-test is available for Python through the SciPy
4
Open Source library.

The benchmarking was implemented using timing functionality from the C++ standard

library and CUDA events. There are specialized libraries for benchmarking, but this approach

gives us more control over measurements and lets us make more precise measurements with

respect to data transfers.

1.5 Delimitations
In this work, we have limited ourselves to investigate the performance of existing algorithms

for gamma random number generation. This is motivated by the large existing collection of

algorithms for generating gamma random variables and a comparison of the performance of

4
https://scipy.org

https://scipy.org
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these algorithms on GPUs has not been published. We have only compared a selection of the

available algorithms, since there are many known algorithms for gamma random number

and implementing all of them would be beyond the scope of this thesis.

The implementations of the algorithms do not support exact reproducibility of the pseudo

random sequences generated. Parallel and distributed random number generators that

support this synchronized splitting into streams are complex to implement and the necessary

synchronization has a negative impact on performance. From a theoretical perspective this

is not problematic, since stochastic simulation is driven by laws of large numbers. However,

this is of course negative from a reproducibility point of view.

We do not analyze the statistical quality or numerical precision of the output of the algorithms.

Our focus is on the efficiency and throughput of the generators. That said, all generators we

compare are well-known and published in well-respected journals and we are not aware of

any flaws in their outputs.

1.6 Outline
The outline of this work is as follows.

In Chapter 2, we provide the necessary background material on probability, random

variables and random number generation required to follow this thesis. We also give a

brief introduction to GPUs, and the difference in architecture between GPUs and CPUs.

We end this chapter by showing how the performance characteristic for rejection

sampling algorithms differ between GPUs and CPUs.

In Chapter 3, we present the selected algorithms for generating gamma random vari-

ables and discuss their performance characteristics from a GPU perspective. Especially,

we present the rejection probabilities of the algorithms with respect to the SIMT ar-

chitecture of GPUs instead of the rejection probabilities traditionally used to analyze

such algorithms.

In Chapter 4, we describe our CUDA implementations of the gamma generators and

discuss the benchmark code used for performance measurements. We also provide

information about the hardware and systems used for our measurements.

In Chapter 5, we present and analyze the measurement results. Our results show

that it is more efficient to generate gamma random numbers on GPUs than on CPUs,

even if the algorithms used are rejection sampling algorithms. We show that the best

performing algorithm for all shape parameters ˛ (algorithm (GA) from [7]) is close

to a normal generator in performance, and that it only takes 1:5 � 2� more time to

generate gamma random numbers than normal random numbers on the GPU using this

algorithm. This is a 1000� speedup compared to the reference CPU implementation.
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2 Background
In this chapter, we review the basic theory behind non uniform random number generation

along with the general techniques for generating non-uniform random numbers. We start

with a short review of probability and then we introduce the gamma distribution. This is

followed by a section covering the basics of pseudo random number generation. We end this

chapter with a section covering modern GPU architectures, CUDA programming, and the

design of efficient algorithms for GPUs.

2.1 Probability and Random Variables
In this section, we review the basic probability theory which are required to follow thesis.

The material is well-known and can be found in standard probability textbooks (see e.g. [16,

13]) and most advanced machine learning textbooks (see e.g. [37]). Formally, a probability
space is a triple .�;F ;P / consisting of a set � called the sample space, a �-algebra F of

subsets of � called the events, and a probability measure P . A (real) valued random variable
is a Borel-measurable function X W �! R. The (cumulative) distribution function (c.d.f.) of
a random variable X is the function F W R! Œ0; 1� defined by:

F.x/ WD P .X � x/ D P
�
f! 2 � W X.!/ � xg/:

The distribution function of a random variable is always cadlag5 ,which means that

1. F is right continuous on R, i.e. the right limit limx!x0C F.x/ D F.x0/ for every

x0 2 R, and

2. the left limits of F exist on all of R, i.e. the left limit limx!x0� F.x/ exists for every

x0 2 R.

Two random variables have the same distribution if their distribution functions are the same.

The following theorem show that there is a one-to-one correspondence between cadlag

functions with an additional property and random variables on R.

Theorem 2.1 (see e.g. [16, Theorem 7.2]). A function F W R! R is a distribution function
of a real valued random variable if and only if F is cadlag and satisfy

lim

x!�1
F.x/ D 0; lim

x!C1
F.x/ D 1:

The random variables we study in this text are all continuous real valued random variables
6

or discrete random variables. A random variable X is continuous if there exists a (Borel

measurable) real valued function, f , called the probability density function (p.d.f) of X such

that

F.x/ D

Z x

�1

f .y/ dy ; for every x 2 R:

The expected value of a continuous random variable is given by

EŒX� D

Z 1
�1

f .x/ dx ;

5
The term cadlag comes from the french expression for right-continuous with left limits: continue à droite, limite

à gauche.
6
In measure theoretic terms the continuous real random variables are the ones which have laws that are

absolutely continous with respect to Lebesgue measure on R
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A random variable is discrete if it takes at most countably many values fx1; : : : ; xng, in which

case the expected value is given by

EŒX� D
nX
iD1

xjP .X D xj /:

The variance of a random variable is defined as

V ŒX� WD E
h�
X � EŒX�

�2i
D E

�
X2
�
� EŒX�2:

Most random variables of interest to us will be continuous and from now on we will take

the term random variable to mean continuous real valued random variable. The probability

density function and the distribution are connected by the following result.

Theorem 2.2. LetX be a random variable with distribution F and probability density function
f , then F 0.x/ D f .x/ at every continuity point x of f .

Especially, this means that if F is differentiable, then f .x/ D F 0.x/. If the random variable

is not clear from context we write FX and fX to denote the distribution and probability

density function of X .

2.1.1 Random Vectors and Independence
If X1; : : : ; Xn are random variables, then we call X D .X1; : : : ; Xn/ a random vector. The

distribution of a random vector is given by

F.x1; : : : ; xn/ D P .X1 � x1; : : : ; Xn � xn/:

If F is differentiable, then the probability density function the random vector X is given

by

f .x1; : : : ; xn/ D
@nF.x1; : : : ; xn/

@x1 : : : @xn
:

Two events A;B are said to be independent if

P .A \ B/ D P .A/P .B/;

for every pair of eventsA;B 2 F . Similarly, two random variables are independent if

P .X 2 A; Y 2 B/ D P .X 2 A/P .Y 2 B/;

for every pair of events A;B 2 F . For continuous random variables independence can be

characterized in terms of their distribution functions or their probability density functions.

Theorem 2.3. The random variables X1; : : : ; Xn are independent if and only if

FX.x1; : : : ; xn/ D FX1.x1/ : : : FXn.xn/;

or equivalently
fX.x1; : : : ; xn/ D fX1.x1/ : : : fXn.xn/;
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2.1.2 Transformations
Given a random vector X and an integrable function g W Rn ! Rn

the composition

g ıX D g.X/ is also a random vector defined on�. There are two important theorems that

form the basis of the construction of many non-uniform random number generators. The

first result shows how the density of the random vector g.X/ can be expressed in terms of

the density of X.

Theorem 2.4 (see e.g. [16, Theorem 12.7]). Let X be a random vector and g W Rn ! Rn

be an injective differentiable function with continuous non-zero derivative. Then the p.d.f. of
Y D g.X/ is given by

fY.y/ D

(
fX
�
g�1y

� ˇ̌
detJg�1y

ˇ̌
; y 2 g

�
X.�/

�
;

0; else;

In the special case when X is a real valued random variable, g W R! R and Y D g.X/ this

reduces to the formula

fY .y/ D fX
�
g�1.y/

� ˇ̌̌̌ d
dy
g�1.y/

ˇ̌̌̌
:

An immediate consequence of Theorem 2.4 is that if X is a random variable with distribution

fX and Y D aX C b for constants a; b > 0, then

fY .y/ D
1

a
f

�
x � b

a

�
:

More examples of how Theorem 2.4 can be applied to form new distributions from old can

be found in [9, §I.4.]. The second transformation, that is often used to generate non-uniform

random variables is based on the distribution function.

Theorem 2.5. Let X be a random variable with distribution function F , and U be a uniform
random variable, then the random variable

F �1.U / D inffx W F.x/ D U g

also has distribution F .

Theorem 2.5 is the basis for the inverse method for generating non-uniform random variables,

which we discuss in section 2.5 of this chapter.

2.1.3 Probability Distributions
In this section, we review the probability distributions which will be of importance for this

thesis. The most basic is the Poisson distribution which represents a random variable that is

either 1 with probability p or false with probability 1 � p.

Definition 2.1. Let p 2 Œ0; 1�, then a random variable X is Bernoulli distributed, Ber.p/, if

P .X D 0/ D 1 � p; P .X D 1/ D p:

A random variable that is Bernoulli distributed is often called a Bernoulli trial, since it can

be used to model an experiment with only two outcomes, one with with probability p, and
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the other probability 1 � p. A sequence of random variables .Xi /i�1 is called a Bernoulli
process if the random variables Xi are i.i.d. Ber.p/ distributed. Bernoulli processes are very

common and a closely related distribution is the geometric distribution.

Definition 2.2. Let p 2 Œ0; 1�, then a random variable X is geometrically distributed, Ge.p/,
if

P .X D k/ D .1 � p/k�1p; k � 1:

If X is a geometrically distributed random variable, then the probabilities P .X D k/

correspond to the probability that Xk is the first random variable of a Bernoulli process with

value 1. Thus, the geometric can be used to study Bernoulli processes and we will apply

it to derive properties of rejection sampling algorithms later in this chapter. The expected

value, variance, and characteristic function of some common discrete distributions are listed

in Table 1 below.

X EŒX� V ŒX� �X .t/

Bernoulli(p) p p.1 � p/ 1 � p C peit

Geometric(p) 1
p

1�p

p2
peit

1�.1�p/eit

Binomial(n; p) np np.1 � p/ .1 � p C peit /n

Table 1: Common discrete probability distributions.

Next, we will consider continuous distributions. The most simple of all continuous distribu-

tions is the uniform distribution defined below.

Definition 2.3. Let a < b be real numbers, then the uniform distribution U.a; b/ has p.d.f.

f .x/ D

(
1
b�a

; x 2 .a; b/;

0; else:

The value of a uniform random variable corresponds to a random sample from the interval

Œa; b�. The most important case is when a D 0 and b D 1, and we shall generally use U to

denote a random variable with distribution U.0; 1/. Many important distributions belong to

location-scale families.

Definition 2.4. A family F of probability distributions f .xI�; �/ , which are parametrized

by two parameters: �; � 2 R; � > 0 is called a location-scale family of distributions if it

holds that

f .xI�; �/ D
1

�
f
�x � �

�

�
; f .x/ WD f .xI 0; 1/;

for every � 2 R and � > 0.

The probability density function f .x/ D f .xI 0; 1/ is called the base of the family. The

parameter � is called the location and different values on � shifts the p.d.f. on the real axis.

The parameter � is called the scale and it scales the p.d.f by 1=� . If X has p.d.f. f .x/ then

it follows from Theorem 2.4 that the random variable �X C � has p.d.f. f .xI�; �/. The

normal distribution is the standard example of a location-scale family. Some location-scale

families are generally expressed using the reciprocal of � instead, and we write � D 1=� ,
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for the reciprocal. This is often the case with exponential distribution, which we denote as

Exp.�/.

More complex distributions do not fit into the category of location-scale families, and a

parameter that does not shift or scale the p.d.f. is generally referred to as a shape parameter.

Many interesting distributions, which are not location-scale families can be classified by

a shape and scale parameter, among them the gamma distribution. The shape and scale

parameters are often denoted as .k; �/ or .˛; ˇ/. If the distribution belong to the location-

scale family of distributions we have used � to denote the location parameter and � to

denote the scale parameter. We have included the the basic properties of the continuous

distributions we will use in this thesis in Table 2 below.

X EŒX� V ŒX� fX .x/

Exp.�/ 1
�

1
�2

�e��x , x � 0

N.�; �2/ � �2 1

�
p
2�
e
�
.x��/2

2�2

Be.˛; ˇ/ ˛
˛Cˇ

˛ˇ

.˛Cˇ/2.˛CˇC1/

x˛�1.1�x/ˇ�1

B.˛;ˇ/
, 0 < x < 1

�2n n 2n 1

2n=2�.n=2/
xn=2�1e�x=2 , x � 0

�.˛; ˇ/ ˛ˇ ˛ˇ2 ˇ˛

�.˛/
x˛�1e�ˇx , x � 0

Cauchy.�; �/ - -
�

�
h
.x��/2C�2

i
Table 2: Common continuous probability distributions.

The expected value and variance of the Cauchy distribution is not defined, because the

integrals does not converge.

2.2 The Gamma Distribution
The gamma distribution is family which depends on two parameters: the shape ˛, and the

scale ˇ. Formally, the gamma distribution can be defined through its probability distribution

function.

Definition 2.5. Let ˛; ˇ > 0 be real numbers, then the gamma distribution �.˛; ˇ/ has p.d.f.

f .x/ D

(
1

�.˛/ˇ˛
x˛�1e�x=ˇ ; x > 0;

0; x � 0:

The factor �.˛/ which appears in the denominator of the p.d.f. denotes the gamma function

evaluated at ˛ (see definition below). The parameter’s ˛ and ˇ are also commonly denoted

as and a and b. Furthermore, some authors use the reciprocal of ˇ to denote the gamma

distribution (see e.g. [19]), then by taking � D 1=ˇ and �.˛; �/ the p.d.f. can be expressed

as

f .x/ D

(
�˛

�.˛/
x˛�1e��x ; x > 0;

0; x � 0:
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The two notations �.˛; ˇ/ and �.˛; �/ are the two most common in the literature, but other

notations also exist (see e.g. [29]). It is good to note that there is no standard convention for

numerical libraries whether to use ˇ or the reciprocal � as the scale parameter. An example

of this is the SciPy and NumPy libraries for Python which are closely tied but use different

representations for their scale parameters in their gamma distribution objects.
7
Thus we

recommend that users carefully check which convention is followed by the libraries they

use. We will use the location-scale parametrization with shape ˛ and scale ˇ to describe the

gamma distribution in all equations and code that follows from now on.
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Figure 1: Gamma distributions with different shape and scale parameters.

The gamma function � W .0;1/! Œ0;1/ which appears in the quotient of the p.d.f. of the

gamma distribution is defined as

�.x/ WD

Z 1
0

tx�1e�t dt:

By integration it can be shown that �.1=2/ D
p
� and that �.1/ D 1. Using partial

integration it follows that

�.x C 1/ D x�.x/; x > 0; (1)

and especially

�.nC 1/ D nŠ ; n 2 N: (2)

7
NumPy’s numpy.random.Generator.gamma has a scale parameter corresponding to ˇ , while SciPy’s

scipy.stats.gamma object has a scale parameter corresponding to the reciprocal �.
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Even though the gamma distribution does not belong the the class of location-scale families

it is still linear in the shape parameter ˛, and ˇ is a proper scale parameter. We formalize

this in Theorem 2.6 below.

Theorem 2.6. Let ˛1; : : : ; ˛n; ˇ > 0 and c > 0 be a positive constant. If Xi � �.˛i ; ˇ/, then

cX1 C � � � C cXn 2 �.˛1 C � � � C ˛n; cˇ/:

This can be proved by using characteristic function (see e.g. [9, p. 402]). Theorem 2.6 is

fundamental for efficient generation of gamma random variates as it tells us that in order

to generate a �.˛; ˇ/ variate we can generate a �.˛; 1/ variate and multiply it by ˇ. Thus,

it is useful to note the density function of a �.˛; 1/ distributed random variable is given

by

f .x/ D
e�xx˛�1

�.˛/
:

The gamma distribution family is very large and it contains several other families of distri-

butions. Below, we state a useful result that relate the gamma distribution to the exponential

and chi-square distribution which can be found in [19] and [42].

Theorem 2.7. Let X be a gamma distributed random variable.

1. If X � �.1; ˇ/, then X � Exp.�/ with � D 1
ˇ
.

2. If X � �.n=2; 1/, then X � �2n, i.e. the chi-square distribution with n degrees of
freedom.

Item 1 from Theorem 2.7 combined with the linear property of the gamma distribution give

additional insight how the gamma distribution can be used to model stochastic processes.

If n is a positive integer, then a �.n; ˇ/ random variable can be used to model a sum of

exponential random variables.

2.3 Pseudo Random Number Generation
The basic assumption behind all random number generators used for simulation purposes is

that we can simulate uniform random numbers. In the most general sense a random number
generator (RNG) is a method that can produce random numbers according to some probability

distribution. Truly random numbers can be generated by measuring physical phenomena,

such as radioactive decay or noise in electric circuits. Most CPU vendors include this type of

physical random devices in their motherboards and the major operating systems support

cryptographically safe random number generation by combining such hardware RNGs with

other random sources collected from the system. The RNGs which depend on physical

devices and other sources of entropy are generally very robust and secure but not optimal to

use for simulations [24]. The main drawbacks of using physical devices for random number

generation is that they are costly and complicated to use and the random sequences are not

reproducible.

For stochastic simulation purposes, where the speed with which random numbers can be

generated matters, algorithms are used to generate random numbers instead. Algorithms

that generate random numbers are called pseudorandom number generators (PRNGs). A PRNG

is deterministic and therefore not truly random. Hence, the word pseudo is used to describe

such algorithms. The terms RNG and PRNG are often used interchangeably, and from now

on we will use RNG to mean a PRNG.
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2.3.1 Basic definitions
There are a few different formal definitions of random number generators which appear in

the literature (compare for instance [18, 31, 20]). The difference is mainly in the generality

of the definition. We will use the following definition of a random number generator which

is a slightly modified version of the definition given in [20].

Definition 2.6. A (pseudo)random number generator is quintuple .S; s0; '; U; u/ consisting
of:

S is the of states of the generator,

s 2 S is the state of the generator,

' W S ! S is the transition function between states,

U is the set of output states, and

u W S ! U is the output function of the generator.

Given a state s0 2 S the sequence s1 D '.s0/; s2 D ' ı'.s0/; : : : is called the random (state)
sequence of the generator and s0 is called the seed. Any s0 2 S can be used as the seed,

however for some generators not all states are recommended to be used as seeds. The period
of a random generator is the smallest integer p for which there exists a sequence s0; : : : ; sp
such that sp D s0. Given a generator of period p and a nonnegative integer � � p it is

possible to divide the state sequence into several sequences of length � :

s0; : : : ; s��1 s� ; : : : ; s2��1; : : : ;

and such subsequences are called streams. In theory, all RNGs can be divided into multiple

streams, however it is not always practically possible. Some RNGs support computationally

cheap look ahead, i.e. the option to compute snCk given sn in constant time (with respect

to k), compared to recursively computing the state which is an O.k/ operation. The ability

to split a generator into multiple streams is very important for practical purposes because

multiple threads can use copies of the same generator starting with different seeds.

2.3.2 Categories of random number generators
Random number generators can be broadly classified into two categories:

1. uniform RNGs.

2. non-uniform RNGs.

Uniform RNGs are those where the output sequence simulates i.i.d. random variables Ui
over the space U . When the output distribution is non-uniform, the generator is called a non-

uniform RNG. All practical algorithms used for generating non-uniform random numbers

make use of uniform RNGs as their source of randomness.

Another important aspect of RNGs is whether the state space (and hence the upcoming num-

bers in a sequence of outputs) can be determined from previous outputs. For cryptographic

purposes it is neccessary that the state of a generator can not be determined in a reasonable

amount time given an output sequence. This is not neccessary for simulation purposes and
we will not treat cryprographic RNGs. In this thesis all RNGs are non-cryptographic. Given an
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output sequence, the state of the RNGs can generally be recovered and the RNGs we present are
not safe to use for cryptographic purposes.

2.3.3 Testing Random Number Generators
There are several test programs that can be used to test a uniform RNG for statistical flaws,

notably, the TestU01 test-suite [26] and the PractRand test-suite [10]. These are used as a

benchmark for correctness in most publications in the field. The TestU01 paper [26] covers

much of the theory for statistically testing the output of a RNG. Another good source that

contain a lot of information about RNG testing is [18] which also has a section devoted to

randomness from a more philosophical perspective. Another test, that is commonly used,

is based on Hamming weight dependencies, and a recent method to test for this can be be

found in [6].

There are also many statistical methods which can be used to determine whether it is likely

that a sequence of random numbers belong to a non-uniform distribution and that can be

used to test non-uniform RNGs. A well-known test that can be used for this purpose is the

Kolmogorov-Smirnov (KS) test (see e.g. [18] or [42]) , and it is based on the following test

statistic.

Definition 2.7. Let X1; : : : ; Xn be a sample from a population with unknown distribution

and F0 a distribution function. Then, the Kolmogorov-Smirnov (KS) test statistic is given by

Dn.F0/ WD sup

x2R





 jfk W Xk < xgjn
� F0.x/





:
It can be shown that Dn.F0/ should be close to 0 if the sample X1; : : : ; Xn is distributed

according to the distribution F0. The KS-test is a hypothesis test that can be used to test

whether a sample X1; : : : ; Xn is from a distribution F0. The KS-test uses the KS-test statistic

to test the null hypothesis

H0 W X1; : : : ; Xn � F0

against the alternative

H1 W X1; : : : ; Xn œ F0:

The null hypothesis is accepted if Dn.F0/ is smaller than some threshold, and rejected

otherwise. The KS-test is well studied and widely available in software. There are two types

of errors commonly discussed when performing hypothesis tests:

Type-I error is the error that occur when the null hypothesisH0 is true but rejected anyway,

i.e. a false positive.

Type-II error is the error that occur when the null hypothesisH0 is false but not rejected,

i.e. a false negative.

The p-value associated with test, is the probability of a Type-1 error, given the sample

the test is based on. Thus, if the p-value is low, it possible to reject the null hypothesis

knowing that the probability of the null hypothesis being true is low. For this reason, the

null hypothesis is often rejected if the p-value is lower than some predetermined level of

significance. Commonly, a p-value of 0:05 and 0:01 is used when we want to reject the null

hypothesis. However, the KS-test is often used to determine whether a sample follows a

specified distribution, and in that case we are not looking to reject the null hypothesis. It may

not be clear what p-values are considered good enough to not reject the hypothesisH0, but

generally when performing a KS-test we want the p-value to be as high as possible.
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2.4 Uniform Random Number Generators
In practice, we are most often interested in uniform distributions over some subset of R or

Z. On computers, we represent numbers by bits, and in this section, we consider uniform

generators with an output space consisting of k bits for some nonnegative integer.

Definition 2.8. A uniform k-bit generator is a random generator with output space U D Zk2 ,
i.e. the finite field of random k�bit vectors.

The output sequence ui D u.si / is supposed to mimic a uniform distribution on the output

space U , hence the term uniform. Thus, by interpreting the k bits as an unsigned integer,

a uniform k� bit generator can be thought of as a generator which generate values for

i.i.d. uniform random variables taking values in the set f0; 1; 2; : : : ; 2k � 1g. A continuous

uniform distribution over Œ0; 1/ is then generally approximated by taking

Ui D
ui

2k

We write U.m/ to denote a uniform distribution over the set f0; 1; 2; : : : ; mg. It is easy to

convert random numbers in the interval Œ0; 1/ to random numbers in the interval Œa; b/

by the transformation Xi D .b � a/Ui C a. However, in many situations it is desirable

to generate uniform random numbers in an open interval .a; b/. There are three common

methods used to convert a random integer u, from f0; : : : ; m� 1g to a random number in an

open interval .0; 1/:

1. Generate u from U.m/ until u ¤ 0, and set

U D
u

m
: (3)

2. Generate u from U.m/ and set

U D
uC 1

mC 1
: (4)

3. Generate u from U.m/ and set

U D

(
u

mC1
; u > 0;

m
mC1

; u D 0:
(5)

This can be used to generate a random number in the interval .a; b/ by the transforma-

tion X D .b � a/U C a, as above. It is very common that software libraries that ex-

pose RNGs for uniform distributions generate samples in half-open intervals on the form

Œa; b/, this is the case with numpy.random.Generator.uniform8 from the popular NumPy
library used for numerical computation in Python and the C++ standard template libraries

std::uniform_real_distribution9.

Uniform RNGs have been extensively studied and most books in the field of stochastic

simulation and Monte Carlo methods cover the basic principles of uniform random number

generation, among them Robert & Casella [44], Asmussen & Glynn [4], and Knuth [18].

There are also review papers by important figures in the field which cover the general theory:

[20], and [31]. The rest of this section is devoted to uniform RNGs and we closely follow

[25] and [19].

8
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.uniform.html#numpy.

random.Generator.uniform

9
https://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution

https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.uniform.html#numpy.random.Generator.uniform
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.uniform.html#numpy.random.Generator.uniform
https://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
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2.4.1 Finite Fields and Binary Arithmetic
Most pseudo random number generators are based on arithmetic over finite fields. In this

section, we introduce some notation and concepts which will be used in the forthcoming

sections. A binary digit or bit is a number x 2 f0; 1g. An ordered collection of bits is called a

bit string/array and can be written on the form

x D .x0; � � � ; xn�1/; xj 2 f0; 1g:

In general we consider bit strings as elements of the finite field Fn2 Š .Z=2Z/n, which
consists of all n-vectors x on f0; 1gn under multiplication and addition modulo 2. We use ˚

to denote addition in Fn2 (i.e. element wise addition modulo 2), and˝ to denote multiplication

in Fn2 (i.e. element wise multiplication modulo 2). Arithmetic in F2 is closely connected

with the binary operators implemented in computer hardware. The bitwise XOR operation
corresponds to addition

x XORy WD x ˚ y:

Similarly, The bitwise AND operation corresponds to multiplication modulo 2

x ANDy WD x ˝ y:

A large family generators can be expressed using arithmetic using matrix arithmetic over

Fn2 . These generators are said to be based on matrix linear recurrences modulo 2 (see e.g.

[41]).

Definition 2.9. A RNG is said to be a matrix linear recurrence modulo 2 generator if it has
state space Fk2 and output space Fw2 , for some positive integersw; k, and there exists matrices

A 2 Fk�k2 , and B 2 Fw�k2 such that

xnC1 D A˝ xn;
ynC1 D B ˝ yn;

where xn is the state vector, and yn is the output vector.

The matrices A, and B are called the state transition matrix, and output transformation matrix
respectively. The output vector can be interpreted as an unsigned w-bit integer, z, in the

range Œ0; 2w � 1� by setting

z D

wX
iD1

yi2
w�i ; y D .y1; : : : ; yn/: (6)

It is common to see the output specified in the interval Œ0; 1/ using a dyadic expansion on

the form

u D
X
iD1

yi2�i :

Note that this is equivalent to using the integer output from equation (6) combined with the

standard transformation from unsigned integers to real values given in equation (3). This

can be seen by dividing z by 2w which yields the identity

z

2w
D

wX
iD1

yi2
w�i2�w D

X
iD1

yi2�i D u:
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The choice of the modulus 2 is made for performance reasons and it’s possible to extend this

method to any finite field F . This is called the multiple-recursive matrix method for pseudo
random number generation (see e.g [38]) introduced in [39]. Many of the RNG algorithms

used today fit into this framework. One advantage of interpreting the generators as linear

transformations over finite fields is that there is rich mathematical theory developed for

such transformation (see for instance the book [28]) which can be used to reason about the

statistical quality of such generators.

2.4.2 Multiple Recursive Generators
The linear congruential generators (LCGs) are among the most simple and well-known

uniform random number generators. A linear congruential generator is a generator with state

S D Œm� D f0; :::; m � 1g and transition function

'.s/ D as C c mod m:

The constant a is called the multiplier, m is called the modulus, and c is called the increment.
Thus a linear congruential generator corresponds to a random sequence of the form

snC1 D asn C c mod m; ui D si

LCGs are simple, fast, and well-studied but too simple for most applications. However,

they are still of interest to practitioners because multiple LCGs can be combined to create

generators that perform well. There is much published theory about LCGs, and a good

overview of the theory can be found in Knuth [18, §3.2.1]. The choice of the values for the

constants a;m; c are of huge importance for the statistical performance of LCGs, and good

choices for the constants can be found in the papers [22], and [47]. However, the several

flaws of LCGs still make them unpractical for large-scale simulations. By comining several

LCGs under a recursive relation it is possible to achieve good statistical properties and this

is the idea behind multiple recursive generators.

Definition 2.10. A multiple recursive generator (MRG) of order k � 1 and modulus m � 2,

is a generator with state space Zkm and state xn D .xn; xn�1; xn�k/, and transition function

defined by the recurrence relation

xn D a1xn�1 C � � � C akxn�k mod m:

The output sequence is created from the sequence of integers .xn/, usually by division with

m which leads to a sequence which approximately uniform in the half open interval Œ0; 1/. It

is common to write a multiple recursive generator on matrix form:

xnC1 D Axn mod m;

where A is the matrix given by

A D

0BBBBBBBBBB@

0 1 0 � � � 0

::: 0
: : :

: : :
:::

0 0
: : : 1 0

ak ak�1 � � � a2 a1

1CCCCCCCCCCA
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Note that the special case when k D 1 corresponds to a linear congruential generator. The

efficiency of MRGs largely depend on two factors, the number of nonzero multiplicative

coefficients an and their values, and the modulus m. However, efficient choices from a

computational perspective does not achieve good-quality random sequences [25, section

3.2.12]. A solution to this problem is to combine multiple lighweight MRGs, this is known

as combined MRGs. A well-known combined MRG, which pass all the statistical tests in the

Test01 test-suite, is the MRG32k3a generator from [21]. The MRG32k3a consists of two MRGs,

both of order 3,

xi;n D ai;1xi;n�1 C ai;2xi;n�2 C ai;2xi;n�3 mod mi ; i D 1; 2:

The two MRGs are combined to give an output

zn D x1;n � x2;n mod m1:

The period is about 3 � 10157 and the specific values for the coefficients of the MRG32k3a
generator is tabulated in Table 3 below.

i ai;1 ai;2 ai;3 mi

1 0 1403580 -810728 232 � 209

2 527612 0 -1370589 232 � 22853

Table 3: Coefficients and modulus for the two MRGs in MRG32k3a.

2.4.3 Xorshift Generators
Another type of generators introduced by Marsaglia in 2003 [32] are the so called xorshift
generators. The xorshift generators are a part of the family of the matrix linear recurrence

modulo 2 generators. We start by recalling the definition of binary shift operations which

are efficiently implemented in modern processors.

Definition 2.11. The left shift x << 1 of x 2 Fk2 is the vector y given by

yi�1 D xi ; i D 2; : : : n; yn D 0:

Similarly, the right shift 1 >> x is the vector y given by

yiC1 D xi ; i D 1; : : : n � 1; y1 D 0:

The left and right shift operators correspond to linear transformations over Fk2 . Especially
we can express the left and right shift of x as

x << 1 D L˝ x;
1 >> x D R˝ x;

Where L and R are k � k matrices with ones one the super- and sub-diagonal respectively,

and zeroes elsewhere. For a > 0 we write x << a and a >> x to denote a consecutive shift
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operations. An operation on x 2 Fk2 is said to be xorshift operation if it can be written on

any of the forms:

x˚ .x << a/;
.a >> x/˚ x:

Using the matrices R and L the left and right xorshift operations can be described as

.I C La/˝ x D x˚ .x << a/;

.I CRa/˝ x D .a >> x/˚ x:

Definition 2.12. Let k; r; w be positive integers satisfying k D wr . A RNG is said to be an

xorshift generator if it has state xn D .vnC1�r ; : : : ; vn/ 2 Fk2 , where vi 2 Fw2 and the state

transition function can be written on the form

vn D
pX
iD1

Aivn�mi ;

whereAi is either a product of xorshift matrices, the identity matrix, or zero, and 0 < mi � r .

The transition function of the xorshift operators can be rewritten as a single matrix multipli-

cation modulo 2 over the state vector x and it can be shown that xorshift RNGs belong the

class of matrix linear recurrence modulo 2 generators (see e.g. [40]). Panneton and L’Ecuyer

further show in [40] that all the generators presented by Marsaglia in [32] fails the BigCrush
test from the TestU01 [26] test-suite.

Even if there are other generators with better statistical properties, there is one generator

from [32] which is still widely used today and it is known as the XORWOW generator. It is

an xorshift generator where the integer output is combined with a so calledWeyl sequence
through addition. The pseudocode for the XORWOW generator is given in Algorithm 1.

Algorithm 1 Marsaglia’s XORWOW generator [32]

// word size is 32, i.e. all variables are 32-bit unsigned integers.

Initialization of constants:
x D 123456789, y D 362436069, z D 521288629, w D 88675123, v D 5783321,

d D 6615241

t D x ˚ .x � 2/

x D y

y D z

z D w

w D v

v D .v ˚ .v � 4//˚ .t ˚ .t � 1//

d D d C 362437

return d C v // unsigned integer addition

2.4.4 Mersenne Twister and Feedback Shift Register
Generators

Another common family of random number generators, which are also based on recurrences

modulo 2, are the so called feedback shift register generators. In his 1965 paper [48] Taus-

worthe presented a technique for generating random nunbers that is known today as a linear
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shift feedback register (LFSR) or Tausworthe generator. An exentension of this method is the

generalized feedback shift register (GFSR) generator by Lewis and Payne [27], and later the

twisted GFSR by Matsumoto and Kurita [34, 35]. It is possible to construct GFSRs with very

large periods and good statistical properties and one of the most known twisted GFSRs is the

Mersenne Twister introduced by Matsumoto and Nishimura in [36]. The Mersenne Twister

algorithm is more complex than the RNG algorithms we have discussed in the previous

section, but is described in detail in the original paper [36]. The best known Mersenne

Twister algorithm is the MT19937 which has a period of length 219937 � 1 and a state con-

sisting of 19937 bits. Furthermore, the authors have released C-code, under a BSD-license,

for their implementation of the algorithm which can be accessed on the Mersenne Twister
Home Page10.

The Mersenne Twister is well-known, available in many software libraries and considered to

have good statistical properties (see e.g. [23]). There is also a variant of the Mersenne Twister

optimized for the GPU which is called MTGP introduced [45]. One drawback of the Mersenne

Twister is that the state vector is very large (19937 bits are required to hold the state for

MT19937). There are some known statistical flaws in the output generated by MT19937 (see
e.g. [51]) but the generator is generally considered to be of high quality [23].

2.4.5 Counter-Based Generators
Another type of RNGs, which are often used in cryptography, are the counter-based gener-
ators. Cryptographically secure generators tend to be slower than the generators used for

simulations. However, there are counter-based generators which are not cryptographically

secure but still pass all tests in statistical test suites like TestU01. In [46] the authors present

several counter-based generators called Philox which are efficient to use in simulations

and pass the Bigcrush test suite from TestU01. Philox generators can also be implemented

efficiently on GPUs, and the generator PHILOX4_32_10 from [46] is available in many RNG

libraries.

2.5 Non Uniform Random Number Gener-
ation

For non-uniform generators the book by Devroye [9] is a standard reference which contains

most techniques used in the design of non-uniform generators and it also makes interesting

comparisons of generators published before its publication. Amore recent and lighter account

of non-uniform random number generation, that cover a subset of the material in [9], can be

found in [19, Chapter 3 & 4].

Even though the aforementioned texts provide an overview of some of the classical random

number generation theory none of them discuss implementation possibilities on modern

CPU architectures or accelerators such as GPUs. When it comes to gamma generation,

there are many algorithms published and comparisons have been made with respect to

their performance on CPUs, for instance in the recent survey paper by Luengo [29]. To the

author’s knowledge, no performance comparison of these algorithms on GPUs have been

published. The known gamma generators use rejection sampling and there are methods

10
Mersenne Twister Home Page: http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html accessed 2024-05-

01.

http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html
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which are well-known by practitioners that can speed up rejection sampling on GPUs. An

informal account of these techniques is given by David Thomas on his personal web page

[50], and a recent paper [43] give a more formal presentation of the same techniques.

All practical methods in use today for generating non-uniform random numbers are based on

the assumption that uniform random numbers can be generated efficiently. The general idea

is to use transformations that convert uniform random variables to non-uniform random

variables. This can be used to generate a samples from non-uniform distributions using

samples from a uniform distribution (see e.g. for an overview of these techniques [9, 4, 19,

18, 44]). Two of the most widely used schemes for non-uniform random number generation

are the inverse method, and rejection sampling, which we introduce in this section.

2.5.1 Inverse Method
The inverse method is based on Theorem 2.5 and is used to generates a sample x, of a random

variable X , by sampling u from U.0; 1/ and then use the inverse of the c.d.f. of X to find

x. This yields the following algorithm known as the inverse method or inversion sampling.

Algorithm 2 Inverse Transform Sampling Method

1: Sample u � U.0; 1/

2: Let x D F �1.U /

3: return x

If F is the cumulative distribution function of X , then it holds that

F �1X .u/ D inffx 2 R W F.x/ � ug:

The inverse method is especially useful when the inverse F �1 is easy to compute. An

example of this is the exponential distribution which has p.d.f. f .x/ D �e��x . The c.d.f. is

given by F.x/ D 1 � e��x and the inverse is given by

F �1.u/ D �
1

�
log.1 � u/: (7)

In many cases the inverse of c.d.f. may not have simple analytical form. The inverse method

can still be used, but the inverse must be computed through numerical inversion methods

(e.g. Newton-Rhapson’s method). We will not use any numerical inversion in this work, but

we will use the inverse method to generate exponential random variables using the identity

in equation (7). Another distribution which can be sampled from efficiently using the inverse

method is the Cauchy distribution. The c.d.f. of a Cauchy.�; �/ distributed random variable

is given by

F.x/ D
1

2
C
1

�
arctan

�x � �
�

�
:

The inverse of the c.d.f is in this case given by

F �1.u/ D �C � tan

�
�

�
u �

1

2

��
: (8)
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2.5.2 Rejection Sampling
A highly versatile technique which can be used to sample from complex distributions or

otherwise computationally untractable distributions is rejection sampling. The general idea

behind rejection sampling is based on following two mathematical identities.

Theorem 2.8 (see e.g. [25, Proposition 4.1]). If U � UŒ0; 1� is independent from X , then the
random vector .X;Ucf .X// is uniformly distributed on

A D f.x; u/ 2 R2 W 0 � u � f .x/g:

Conversely, let .X; Y / be a random vector and f W R! R is an integrable function. If .X; Y /
is uniformly distributed on the set A then X has p.d.f. f .

The above idea can be combinedwith the following result to replace the sampling of a complex

distribution to repeated sampling from a a uniform distribution and another distribution.

Theorem 2.9 (see e.g. [9, Theorem 3.2]). Let .Xi / be a sequence of i:i:d: random vectors
taking values in Rk , for some k � 1, and A 2 B.Rk/ with P .Xi 2 A/ > 0. If N WD minfi 2

N W Xi 2 Ag, then the distribution of XN is given by

P .XN 2 B/ D
P .Xi 2 A \ B/

P .Xi 2 A/
; for every B 2 B.R/:

Note that if the random variables .Xi / are uniformly distributed over the set A, then this

implies that XN is also a random variable which is uniformly distributed over A. We explain

below how this can be used to construct an algorithm to generate samples for a random

variable X by sampling random variables from another distribution. Let f be the density of

X , and assume that we can sample random variables Yi with density g. If supp.f / � supp.g/

and there exists a constant c > 1 such that

f .x/ �Mg.x/; for every x 2 R;

then we can sample from X by Algorithm 3 below.

Algorithm 3 Rejection Sampling

1: Sample y � Y and u � U.0; 1/.

2: if u �M f .y/
g.y/

then
3: Let x D y.

4: else
5: goto 2.

6: end if

This is known as rejection sampling or the acceptance-rejection (AR) algorithm. The acceptance

probability for rejection sampling is given by

p WD P

�
U �M

f.Y /

g.Y /

�
D

1

M
:

A natural question to ask is how many iterations, N , the rejection sampling algorithm will

require to produce a sample X . Each iteration of the rejection sampling procedure produces
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two independent random variables Yi ; Ui , which can be thought of as a a random vector

.Yi ; Ui /. We define the random variable N as

N WD min

�
i 2 N W Ui �M

f.Yi /

g.Yi /

�
:

Then, N represents the number of iterations the rejection sampling algorithm will take, and

it is a stopping time (see e.g. [16]) with respect to the ��algebra generated by the process

.Yi ; Ui /. Fruthermore, since every iteration of the rejection sampling algorithm corresponds

to a bernoulli trial we can conclude that N � Ge.p/When analyzing the performance of

rejection sampling algorithms it is common to use the rejection probability, � D 1 � p,

instead of the acceptance probability p. In figure 2, the probability mass function of N is

plotted for four different values of �. Since N is geometrically distributed, the expected
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Figure 2: Probability mass function for the number of iterations N required in rejection

sampling to generate one sample for different rejection probabilities �.

number of iterations for each sample of X is given by

EŒN � D
1

p
D c:

Using the relationship between � and p we get the identities

EŒN � D
1

1 � �
; � D 1 �

1

M
D
M � 1

M
:

In Figure 3, the expected value of N is displayed for different values of the rejection proba-

bility.
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Figure 3: Expected value of the number of iterations N required by the rejection sampling to

generate one sample with rejection probability �.

2.6 Graphical Processing Units
In this section we review the architecture of NVIDIA GPUs and give an overview of CUDA

which is a programming language for programming NVIDIA GPUs. GPUs differ from CPUs

in that they have thousands of threads which can execute instructions concurrently. This

massive parallelism comes at a cost and GPUs have much less memory per core and share

control flow logic among multiple cores.

2.6.1 GPU Architecture
At the highest level a GPU consists of several streaming multiprocessors (SMs) which are

connected to a L2 cache. The L2 cache is connected to a larger DRAM memory on the GPU.

The SMs each have their own L1 cache and instruction units, and they also have their own

execution units, sometimes referred to as CUDA cores. An illustration of the hardware design

of the SMs is given in Figure 4 below. The SMs have a single instruction, multiple threads
(SIMT) design, also known as an array processor in Flynn’s taxonomy [11]. This means that

different cores have different registers and memory, but are collected in groups which share

the same instruction and control unit. In practice this means that the cores operate in groups

which all execute the same instructions. We will discuss the programming aspect of this

more in detail in the next section.

The number of instructions that can be performed by a CUDA core per clock cycle largely

depends on two factors: the instruction and the data type. The NVIDIA consumer GPUs

intended for graphics purposes, such as computer games, have worse double precision
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Figure 4: Illustration of GPU architecture showing SMs, CUDA cores, and L1 cache.

performance compared to high-end GPUs aimed at HPC. Newer NVIDIA GPUs also have

tensor cores which support complex instructions aimed at machine learning work loads.

Figure 2 in the GPU Performance Background User’s Guide
11
show how the number of CUDA

and Tensor cores per SM differ between the Volta, Turing, and Ampere NVIDIA Architecture

for multiply-add operations of various floating point and integer data types.

Figure 5: Each CUDA core supports a hardware thread, displayed as an arrow.

2.6.2 Programming NVIDIA GPUs using CUDA
NVIDIA has developed its own programming language intended for programming NVIDIA

GPUs, which is called CUDA. CUDA is an extension of C and C++ which support custom

functionality for writing code that executes on GPUs. CUDA also exists as extension of the

Fortran of programming language, but from now on we will mean CUDA C++ when referring

to CUDA. In the CUDA programming model GPUs are referred to as devices and CPUs are

referred to as hosts. Functions which execute on the device are called CUDA kernels.

The CUDA programming model exposes the underlying GPU hardware through threads.

Threads are executed on the CUDA cores and each CUDA thread executes on a CUDA core

(see Figure 5). The SIMT architecture of GPUs means that threads are ordered in small

groups that share control logic. In CUDA programming terms, these are called warps, and
currently the warp size (i.e. number of threads in a warp) is 32 but it may change in future

GPU generations. If the program control flow leads to different threads in the same warp to

take different branches this is handled by first executing the first branch for some threads,

11
https://docs.nvidia.com/deeplearning/performance/pdf/GPU-Performance-Background-User-Guide.pdf

https://docs.nvidia.com/deeplearning/performance/pdf/GPU-Performance-Background-User-Guide.pdf
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while leaving the other threads idle, and then executing the second branch for the other

threads while leaving the threads which executed the first branch idle. This phenomeonon is

called warp divergence or thread divergence and should be avoided, when possible, for best

performance. Figure 6 below illustrate how some cores are left idle while warp divergence

occurs. For this reason it is often the case that code with very complicated control flow

performs better on CPUs than GPUs. Oftentimes, it may be worth to switch algorithms

that include many branches to algorithms with less control flow and more computation to

maximimize the performance on GPUs.

Figure 6: Visualization of warp divergence. The arrow indicates that the thread is doing

work and the red square indicates that the thread is idle.

Threads are grouped together in thread blocks (also called CUDA blocks) which are all

guaranteed to execute on the same SM. The maximum number of threads per block is 1024

which guarantees that the thread block can fit on a single SM. If the block sizes permits,

then it possible to have several active blocks on the same SM at the same time. The thread

block size is usually chosen as a multiple of the warp size. Since all threads in a block

execute on the same SM they can use the L1 cache of that SM to share data between them.

The memory shared between the threads is in CUDA terminology called shared memory
and must be specified either at compile time or as a parameter when launching the CUDA

kernel. Thread blocks also supports synchronization of all threads within the same block by

calling the intrinsic function __syncthreads(). When a thread reaches a __syncthreads()
call it will wait for all other threads in the thread block to also reach it before it proceeds

execution.

Thread blocks can be defined having either one, two, or three dimensions and the thread

block size is specified as launch parameter to the CUDA kernel. This parameter can either

have type int or dim3 which is a built-in CUDA type that represents a struct consisting of

3 unsigned integer members named x,y,z. Furthermore, thread blocks are structured in

a grid which is also represented by either an int or dim3 variable in CUDA. When CUDA

kernels, are launched from a host the thread block and and grid size are specified as launch

parameters when the kernel is called using a CUDA specific syntax which consists of three

angle brackets <<<>>>. An example of this is shown below in Listing 1.

1

2 __global__ void cuda_kernel () {
3 ...
4 }
5

6 int main() {
7 ...
8 // Launch parameters
9 dim3 threads_per_block (16 ,16);
10 dim3 blocks (20, 20, 20);
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11 // kernel launch from host
12 cuda_kernel <<<blocks , threads_per_block >>>();
13 ...
14 }

Listing 1: Example code calling a CUDA kernel from host.

The __global__ specifier used in the definition of the kernel is a CUDA-specific keyword

which is used to denote that the kernel is possible to call from a host. We will go more into

detail about this in the next subsection.

2.6.3 CUDA Kernels and Memory Transfers Between
Device and Host

In CUDA we specify that a kernel is written as device code and is to be executed on the

GPU by using the either of the keywords __device__ or __global__ when declaring the

function. The __global__ keyword indicates that the kernel is executed on a CUDA device

but called from a host (i.e. launched with thread block and grid configuration using triple

brackets). The __device__ keyword is used for kernels which are called from other CUDA

kernels. When writing kernel code, the thread block and grid parameters that the kernel is

launched with has to be taken into account. There are three variables of type dim3 which
are available in all kernels to simplify the programming:

threadIdx holds the index of the current thread inside the current thread block.

blockIdx holds the index of the current thread block inside the grid.

blockDim holds the thread block dimensions (this is equivalent to the second launch param-

eter of the kernel).

Listing 2 below show example kernel code for adding two vectors (stored in float arrays) on

the device using a one-dimensional grid.

1 __device__ add(float x, float y, int size) {
2 return x + y;
3 }
4

5 __global__ vector_add(float* out , float* x, float* y, int size) {
6 // calculate thread index of current thread
7 int tid = blockIdx.x*blockDim.x + threadIdx.x;
8

9 // if the thread index < size do vector addition
10 if (tid < size) {
11 out[tid] = add(x[tid], y[tid]);
12 }
13 }

Listing 2: Example of vector addition kernel in CUDA.

The CUDA programming model does not allow the device to access memory on the host

directly. The programmer is responsible for setting up the memory transfers between the
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device host.
12
Device memory can be allocated using the CUDA function cudaMalloc, and

then memory can be transferred between the host and device using the function cudaMemcpy.
More details about memory handling in CUDA can be found in [3, 15].

2.6.4 Random Number Generation using CUDA and
cuRAND

NVIDIA provides several highly optimized libraries bundled together bundled with the

Cuda-Toolkit, among them is a library for random number generation, named cuRAND. The
cuRAND library consists of both a host interface and device interface which provide functions

to generate random numbers from some common distributions, including uniform random

numbers and normal random numbers. There are five pseudorandom number generators

available in cuRAND
13
(version 12.4), which we list below.

CURAND_RNG_PSEUDO_XORWOW is an implementation of XORWOW from [32] (see section 2.4.3).

CURAND_RNG_PSEUDO_MRG32K3A is an implementation of MRG32k3a from [21](see section

2.4.2).

CURAND_RNG_PSEUDO_MT19937 is an implementaion of MT19937 from [36] (see section 2.4.4).

CURAND_RNG_PSEUDO_MTGP32 is an implementaion of MTGP from [45] (see section 2.4.4).

CURAND_RNG_PSEUDO_PHILOX4_32_10 is an implementaion of PHILOX4_32_10 from [46]

(see section 2.4.5).

The methods provided by the cuRAND library have multiple overloads based on which

RNG the user wants to use. The default pseudorandom number generator in cuRAND is

the CURAND_RNG_PSEUDO_XORWOW generator. When using the cuRAND device API one must

allocate space for and initialize the random number generator states. Each generator type

has a corresponding generator state type for storing the state data. The MRG32k3a, XORWOW,
and PHILOX4_32_10 generators are designed such that each thread can hold its own state.

However, the CURAND_RNG_PSEUDO_MT19937 generator is only possible to use from the host

API and the CURAND_RNG_PSEUDO_MTGP32 generator is designed to be shared by all threads

in a block, but the block may not exceed 256 threads. The CUDA states of the generators

which can be used on the device are listed in Table 4 below.

The state size is something which the programmer must have in mind when using the

cuRAND device API. CUDA kernels are often designed to be launched with a block and

grid configuration such that the number of threads are several times higher than what can

physically launch concurrently on the device. This, so called, over-subscription of compute

resources often leads to better hardware utilization. The sizes of the RNG states often make

it unpractical to let each thread have its own RNG state, when using many more threads

than the hardware supports. There are several solutions to this problem. It is possible to

share RNGs between threads or use a queue to reuse states between thread blocks. Another

approach is to use thread coarsening and a persistent threads programming style, and we

will discuss this more in detail in Chapter 4.

12
This is not entirely true. It is possible to set up shared memory spaces between the host and device and also to

transfer memory between devices using frameworks such as CUDA-Aware MPI. However, none of those methods

will be used in this thesis and we will not mention them further.

13
There are also four quasirandom number generators available in cuRAND.
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RNG cuRAND state size (bytes)

CURAND_RNG_PSEUDO_XORWOW curandStateXORWOW_t 48

CURAND_RNG_PSEUDO_MRG32K3A curandStateMRG32k3a_t 48

CURAND_RNG_PSEUDO_MTGP32 curandStateMtgp32_t 4112

CURAND_RNG_PSEUDO_PHILOX4_32_10 curandStatePhilox4_32_10_t 64

Table 4: State types and state sizes for RNGs available when using cuRAND’s device API.

As mentioned previously the RNG states have to be allocated and initialized before they

can be used. The set up and usage of the Mersenne Twister CURAND_RNG_PSEUDO_MRG32K3A
differ from the other RNGs and we will not describe how to use it. The cuRAND device

API accepts a pointer to a generator state, which point to GPU memory. The generator

states can be allocated on the device using cudaMalloc, and the size of the states can by

queried by the sizeof operator. The generators must be initialized, before use, and this is

possible to do on the device through a function named curand_init, which has the following
signature:

1 __device__ void curand_init(unsigned long long seed , unsigned
long long subsequence , unsigned long long offset ,
CURAND_STATE* state)

where CURAND_STATE should be replaced by the type of the generator statewhich is used.

2.7 Rejection Sampling on GPUs
The performance characteristics of rejection sampling algorithms differ a lot between CPUs

and GPUs. The reason for this is that it suffices that 1 thread in a warp rejects the sample for

thread divergence to occur in the warp. Hence, it is not interesting to study required number

of iterations to generate a sample from the desired distribution as was done in section 2.5.2.

Instead, we ask the question, how many iterations N are required until all threads in a warp

has generated a sample. It has been known for a long time that rejection algorithms can

scale badly on GPUs for this reason, and that the rejection probability for a warp can be

simulated using Markov Chain theory. In a recent paper [43], Ridley and Forget derive an

analytical formula for the probability mass function of N given a warp size t and rejection

probability �:

P .N D k/ D .1 � �n/t �
�
1 � �n�1

�t
This distribution is referred to as the geometric exponential distribution in [43]. Figure 7

show the probability mass function of N is for different rejection probabilities. Note that

the probability that all threads in a warp would accept their sample in the first iteration is

less than 0:2 even for � D 0:05 and when � D 0:2 the probability of all threads in the warp

accepting the sample is almost 0. Unfortunately, the mean of the geometric exponential

distribution has no simple representation or formula. Approximative formulas for the mean
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can be found in [43] and they also compute the expected number of iterations,N , numerically.

For large rejection probabilities it may beneficial to reduce the number of samples generated

per warp, however for small � .< 0:2/ there is little to none speedup [43, see Figure 8 and

Table 1]. Even for values of � up to 0:5 it is possible that the overhead of synchronization

when generating fewer samples than there are threads in each warp may lead to this approach

being suboptimal.

2 4 6 8 10

iterations k

0.0
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0.2

0.3

0.4
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0.7

P(
N

=
k

)

The p.m.f. of N in SIMT rejection sampling
ρ = 0.05

ρ = 0.1

ρ = 0.2

ρ = 0.5

Figure 7: Probability mass function for the number of iterationsN required in SIMT rejection

sampling to generate one sample for each thread for different rejection probabilities �.
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3 GammaRandomNumberGen-
eration

In this chapter, we present several well-known gamma random number generation algorithms.

There are many algorithms for gamma generation published, and we only cover a selection

of them. Especially, all algorithms we cover are based on rejection sampling. We focus on

algorithms for generating gamma variates for ˛ > 1. This is not as limiting as it may seem,

because it is always possible to transform a �.˛C1; 1/ random variable to a �.˛; 1/ random

variable. Thus, with an additional computational step all algorithms presented in this chapter

can be modified to generate gamma variates for ˛ � 1 as well.

3.1 Basics of Gamma Random Generation
As mentioned earlier there are two general approaches generating gamma random variates.

The first is by rejection algorithms (see Algorithm 3) and the second is by using the inverse

method (see Algorithm 2). All algorithms we cover are based on the rejection method. Since

the gamma family of distributions has a scale parameter ˇ it is always possible to generate

a random variate X � �.˛; 1/, and then scale it by the transformation X 7! ˇX to get a

�.˛; ˇ/ variate. For this reason, the scale parameter ˇ is usually discarded when looking at

gamma generation algorithms and only the parameter ˛ is of interest.

The gamma generation algorithms are broadly divided into two categories, based on whether

˛ exceeds 1 or not. The reason for this is that for ˛ � 1 the probability density function of

the gamma distribution tends to infinity as x tends to 0. On the other hand, when ˛ > 1 the

density is 0 at x D 0 with a peak at some x > 0. However, by introducing an independent

uniform random variable it is possible to transform a �.˛ C 1; 1/ random variable to a

�.˛; 1/ random variable, as is seen in the following lemma ([33, see note on top of page

371]).

Lemma 3.1. Let Y � �.˛ C 1; 1/ for some ˛ > 0 and U � U.0; 1/ be independent random
variables, then

X D Y U 1=˛ � �.˛; 1/:

Note that the transformation given in Lemma 3.1 can be used for any ˛ > 0, but it is mostly

used to convert random variates for ˛ in the range .1; 2� to random variates with ˛ in the

range .0; 1�. The computations required are also cheap without any branches, which makes

it especially suitable for use on GPUs.

There are two special cases for which gamma variables can generated very efficiently. The

first concerns the case when ˛ D n for some integer n. Then, by Theorem 2.6 and Theorem

2.7, �.n; 1/ is equivalent to the distribution of a sum of n independent Exp.1/ random

variables. Exponential random variates can be efficiently generated using the inversion

algorithm and equation (7). This results in Algorithm 4, listed below, for generating a �.n; 1/

random variate.

The other case is when ˛ D n=2 for some integer n. This corresponds to sampling from the

�2-distribution with n degrees of freedom. Hence, a �.n=2; 1=2/ variate can be generated

from n normal random variates. However, sampling from the exponential is generally more
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Algorithm 4 �.n; 1/ random number generation (n integer).

1: U D 1

2: for i D 1; : : : ; n do
3: V D U.0; 1/

4: U D UV

5: end for
6: return � log.U /

efficient than sampling from the normal distribution and n=2 is either an integer if n is even

or k C 1=2, where k D bn=2c if n is odd. By noting that if N � N.0; 1/ and Ei � Exp.1/,

then

X D N 2
C

kX
iD1

Ei � �.k C 1=2; 1/:

This identity can be used to generate�.kC1=2/ random variates evenmore efficiently.

We aremainly interested in algorithms for sampling from the gamma distribution for arbitrary

values of ˛ and not only the special cases mentioned above. In the following sections we

introduce five known algorithms for gamma random number generation, that we believe

can be efficiently implemented on GPUs. What we mean by this is that we have selected

algorithms with few branches and only one or two squeeze steps. Many of the algorithms

for gamma random number generation which has been published use several different

dominating distributions for the different sections of the density. However, for the SIMT

architecture this leads to warp divergence and an even higher expected value for N , the

number iterations required before accepting a sample.

3.2 Ahrens-Dieter GC
In their paper [1] Ahrens and Dieter present several algorithms for generating gamma

random variates. One method, which is often used as a comparison for benchmark in other

publications is the GC algorithm, presented below. The GC algorithm is based on rejection

sampling from the Cauchy distribution with location � D ˛ � 1 and scale � D
p
2� � 1.

The main idea behind the algorithm is the following mathematical identity (see [1, equation

(3.3)])

e�xx˛�1

�.˛/
�

1

�.˛/

e�.˛�1/.˛ � 1/˛�1

1C 1
2˛�1

�
x � .˛ � 1/

�2 ; ˛ > 1; x > 0: (9)

The left hand side of equation (9) is the p.d.f. of the �.˛; 1/ distribution, and it can be shown

the right hand side is is proportional to the p.d.f. of the Cauchy distribution. In order to see

this it is easiest to rewrite the p.d.f. of the gamma distribution as

g.x/ D
�

�
h
.x � �/2 C �2

i D 1

��
h
1C .x��/2

�2

i
:

Thus, with the location � D ˛ � 1 and scale � D
p
2� � 1 the density simplifies to

g.x/ D
1

�
p
2˛ � 1

h
1C .x�.˛�1//2

2˛�1

i
:
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From equation (9), it follows that densities satisfy

f .x/ �Mg.x/; M D
�
p
2˛ � 1.˛ � 1/˛�1

�.˛/
;

and therefore rejection sampling can be used. The sampling from the Cauchy density is

easily done using the rejection method. With the choice of � and � introduced above and

the identity for the inverse c.d.f. of the Cauchy distribution given in equation (8) we get

that

x D ˛ � 1C
p
2˛ � 1 tan

�
�

�
u �

1

2

��
:

Algorithm 5 Ahrens-Dieter (GC) gamma generator [1]

1: b D ˛ � 1

2: A D �˛ C b

3: s D A

4: repeat
5: sample u � U.0; 1/

6: t D s � tan.� � .u � 0:5//

7: x D b C t

8: if x < 0 then
9: go to step 2

10: end if
11: sample u� � U.0; 1/

12: if u� > exp

�
b � log.x=b/ � t C log

�
1C t2=A

��
then

13: accept x

14: end if
15: until x is accepted

16: return x

The GC algorithm follows the general structure of rejection sampling (Algorithm 3). There

are two steps of the algorithm which may not be clear from our previous discussion. Firstly,

on line 8 and 9 we check if the Cauchy variate generated (x) is less than zero. This is done

because the p.d.f. of the gamma distribution is zero for any x < 0 which would lead to

rejection of the sample. Secondly, the acceptance condition on line 12 has been rewritten

using some clever mathematical tricks, see [1] for more details.

We know from section 2.5.2 that the rejection probabilities for Algorithm 5 can be calculated

from the expected number of iterations which are given for different values of ˛ in [1]. The

rejection probabilities of Algorithm 5, calculated from the values in [1], are presented in

Table 5 below.

� �
��1

0.500 0.47 0.43

˛ 1C " 2 3 1

Table 5: Rejection probabilities (�) of the Ahrens-Dieter (GC) gamma generator (Algorithm

5) for different values on ˛.
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3.3 Cheng (GA)
Another simple gamma generator that is based on rejection sampling is the (GA) generator

from [7]. The algorithm samples from the Burr XII distribution with parameters � and �

(see e.g. [9, p. 411]). The probability density of the Burr XII distribution is given by

g.x/ D ��
x��1

.�C x�/2
; x > 0;

and the c.d.f is given by

F.x/ D
x�

�C x�
:

The inverse of the c.d.f can be solved for analytically and it is given by

x D F �1.u/ D ˛ exp
h
a log

� u

1 � u

�i
:

Thus, the inverse method can be used to efficiently generate samples from the Burr XII

distribution. In the (GA) algorithm, the choice for the parameters is � D ˛� and � D
p
2˛ � 1. Then the rejection sampling condition f .x/ � Mg.x/ is satisfied with the

constant

M D
4˛˛e�˛

�.˛/
p
2˛ � 1

:

The full Cheng (GA) algorithm is listed below in Algorithm 6

Algorithm 6 Cheng (GA) gamma generator [7]

1: a D
p
2˛ � 1, b D ˛ � log.4/, c D ˛ C 1

a
.

2: repeat
3: sample U1; U2 � Uniform.0; 1/.

4: V D a log
�

U1
1�U1

�
.

5: X D ˛eV .

6: if b C cV �X � log

�
U 21 U2

�
then

7: accept X

8: end if
9: until X is accepted

10: return X

There is also a version of Algorithm 6 known as (GB), where an extra squeeze step is added.

The version (GB) is commonly used as reference implementation in the literature on gamma

generators, but from a theoretical view point the version without a squeeze step, (GA), is

more attractive for high performance on SIMT architectures. The rejection probability of

the algorithm decreases as ˛ increases. It ranges from � D 0:32 at ˛ D 1 to approximately

� D 0:13 as ˛ tends to infinity, and � < 0:2 for every ˛ > 2.

3.4 Cheng-Feast (GKM3)
There are several non-uniform random number generation methods that can be considered

variations of the rejection sampling algorithm. One such method is the the ratio of uniforms
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(ROU) method, from [17]. Cheng & Feast presents two gamma generators based on this

method in [8]. Their proposed algorithms (GKM1) and (GKM2) are efficient for different

ranges of ˛ and they recommend combining the algorithms to achieve good performance for

all ˛ > 1. The resulting algorithm which is referred to as (GKM3) uses (GKM1) to generate

the gamma variates if ˛ < 2:5 and (GKM2) if ˛ � 2:5. The (GKM1) algorithm is presented

below. The (GKM2) algorithm is similar but also includes a squeeze step and can be found in

Algorithm 7 Cheng-Feast (GKM1) gamma generator [8]

a D ˛ � 1, b D
˛� 1

6�˛

a
, c D 2

a
, d D c C 2

repeat
sample U1;U 2 � U.0; 1/

W D b � U1
U2

if .c � log.U 2/ � log.W /CW / < 0 then
accept W

end if
until W is accepted

return a �W

the original paper [8]. For the theory behind the GKM generators and the ROU method the

reader can consult [9], [19], and [17].

3.5 Best (XG)
Another simple gamma generator which is based on rejection sampling was given by Best

in [5]. It is based on rejection sampling from Student’s t-distribution with two degrees of

freedom. A proof correctness of the algorithm can be found in Devroye [9, see Theorem

IX.3.3 and surrounding discussion]. The original algorithm contains a squeeze step, which

we have removed for increase performance on GPUs. We have listed the algorithm without

the squeeze step below in Algorithm 8.

Algorithm 8 Best (XG) gamma generator (without squeeze step) [5]

1: b D ˛ � 1, c D 3˛ � 3
4
.

2: repeat
3: sample U; V � Uniform.0; 1/.

4: W D bU=.1 � U/.

5: ˇ D .2:71828CW /=c.

6: if V � 1 � 2
3
ˇ3 or log.V / � 1

2
W C b � bˇ then

7: accept W

8: end if
9: until W is accepted

10: return W

3.6 Marsaglia-Tsang
In this section we introduce an algorithm for generating gamma random numbers by

Marsaglia & Tsang [33]. This generator is commonly used for gamma generation on CPUs and
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the code is very simple. One the other hand, the theory behind this generator is more complex

than that of the other generators we have presented. The generator is based on the exact-

approximation method from [30]. For the theoretical details of this generator we refer the

reader to the original paper [33] and to [30] for more details about the exact-approximation

method.

The algorithm is a very simple rejection algorithm that require one uniform sample and

one sample from the normal distribution in each iteration. In [33] the authors also provide

a variant of the algorithm with an extra squeeze step. For usage on a GPU it is generally

preferred to avoid introducing squeeze steps, since it is very likely that at least one thread

will have to execute the costly branch anyway. Thus the version of the Marsaglia-Tsang

generator displayed below in Algorithm 9 is the basic version of the algorithm without the

squeeze. The rejection probabilities of the Marsagla-Tsang generator is less than 0:05 for

Algorithm 9 Marsaglia-Tsang gamma generator (without squeeze step) [33]

1: d D ˛ � 1
3
and c D 1p

9d
.

2: repeat
3: sample Z � Normal.0; 1/.

4: V D .1C cZ/3.

5: sample U � Uniform.0; 1/.

6: X D dV .

7: if V > 0 and log.U / < 1
2
Z2 C d � dV C d log.V / then

8: accept X .

9: end if
10: until X is accepted

11: return X

all ˛ > 1 and less than 0:01 for all ˛ > 4. This is extremely low compared to most other

generators. The exact expression for the rejection probability is given by:

� D 1 �

R1
�1=c

eg.x/ dxR1
�1

e�x
2=2

dx
; g.x/ D d log

�
.1C cx/3

�
;

where c and d are the same as on line 1 of Algorithm 9. The low rejection rate, makes the

Marsaglia-Tsang an ideal candidate for a gamma generator to be used on the GPU.
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4 Methods
In order to investigate whether gamma random number generation on GPUs can be done

efficiently we implemented all algorithms from Chapter 3 in CUDA and measured the time

to generate gamma variates for varying sample sizes and different shape parameters ˛. We

also measured the time to generate gamma variates on a CPU using a single thread. This

was implemented using the the random number generation facilities of the C++ standard
template library (STL)

As we discussed in Chapter 2, memory transfers between the CPU and the GPU can often be

the main bottleneck when using GPUs to accelerate compute work loads. When benchmark-

ing GPU code one must decide whether to include the memory transfer times between the

CPU and the GPU. We chose to not include the memory transfer times in our benchmark

results and there are several reasons for this. Firstly, the random number generation is usually

only a part of a more complex algorithm which also execute on the GPU. Thus by measuring

the time it takes to generate the numbers on the GPU, we measure the performance of the

kernel for the most common use case. Secondly, if we were to include the data transfer time,

it would be harder to compare performance between different gamma generation kernels

on the GPU. If a practitioner would like to generate a very large number of gamma random

numbers on the GPU and then transfer the random numbers to the CPU, then this is best

implemented using CUDA streams to overlap communication and computation, which is

architecturally different from the main use case of the random number generators we have

in mind.

There is also a cost associated with initializing the pseudo random numbers generator

states on the GPU, however this only has to be done once after the generator states has

been allocated on the GPU. In most stochastic simulation and Monte Carlo use cases, the

initialization is only done once, at the beginning of the application, and for this reason we

have chosen not to include the state initialization measurement in our reported generation

times. In the next section we present more details about the CUDA implementation of the

gamma generation kernels and benchmarking code.

4.1 CUDA Implementation
We implemented the 5 gamma generation algorithms fromChapter 3 in CUDA as __device__
kernels that can be called from other CUDA kernels. The kernels were all implemented

using C++ templates with two template parameters: RealType and CurandState. RealType
is the floating point type to be used (float or double) and CudaState is the the CUDA type

for the RNG state. The main advantage of using C++ templates is that the each kernel can

be used with any combination of floating-point type and cuRAND state but only has to be

implemented once. All the algorithms from Chapter 3 are based on rejection sampling and can

be efficiently implemented in CUDA using the do-while loop construct and by introducing

a boolean variable accept. The implementations follows the kernel gamma_kernel outlined

below in Listing 3.

1 template <typename RealType , typename CurandState=curandState >
2 __forceinline__ __device__ RealType gamma_kernel(CurandState &

RNG_state , RealType alpha) {
3 // setup
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4 const RealType a = ...
5

6 // rejection sampling loop
7 RealType X;
8 ...
9 bool accept;
10 do {
11 // update step
12 ...
13 accept = // acceptance condition
14 } while (! accept);
15 return X;
16 }

Listing 3: do-while implementation of rejection sampling

The main generator kernel was written using C++ templates with the device kernel passed

as a template parameter and is listed in Listing 4 below. The use of C++ templates allow

for flexibility in selecting which kernel to use with each benchmark instance, without the

overhead of any runtime dispatch. The implementation uses an auto template parameter for

the gamma kernel and this is a C++ 17 feature. Earlier C++ versions would require more

complex workarounds to pass the CUDA kernel as a template parameter.

1 template <typename RealType , auto GammaKernel >
2 __global__ void gamma_pt_strided(RealType *gammas , curandState *

RNG_states ,
3 const size_t num_rands , RealType

alpha = 1.0) {
4 uint tid = blockIdx.x * blockDim.x + threadIdx.x;
5 curandState RNG_state = RNG_states[tid];
6 uint nthreads = blockDim.x*gridDim.x;
7

8 // main loop body
9 uint main_iter_per_thread = num_rands/nthreads;
10 for (uint i=0; i<main_iter_per_thread; i++) {
11 uint idx = nthreads*i+tid;
12 gammas[idx] = GammaKernel(RNG_state , alpha);
13 }
14 // tail loop
15 uint tail_rands = num_rands - main_iter_per_thread*nthreads;
16 if (tid < tail_rands) {
17 gammas[main_iter_per_thread*nthreads+tid] = GammaKernel(

RNG_state , alpha);
18 }
19 RNG_states[tid] = RNG_state;
20 }

Listing 4: Gamma RNG PT implementation

There are several challenges that need to be addressed when implementing Monte Carlo code

on GPUs. Storing too many RNG states on the GPU can have a negative performance impact

and take up much of the memory on the device. This makes it unpractical to oversubscribe

on the compute hardware with grids that are many times the size of physical compute

capabilities of the GPU, as is otherwise common in GPU applications. A commonly used
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solution to this problem is to use thread coarsening (see e.g. [15, section 6.3], where the

number of threads is reduced but each thread does more work than before. In the gamma

random number generation kernel we use a pattern similar to persistent threads (PT) [2, 12].
The persistent threads programming pattern on GPUs tries to launch as many threads as

can possibly execute simultaneously on the GPU and distribute the work between threads

such that all threads remain active throughout the execution. In the case of random number

generation this means that we launch the kernel with a fixed number threads which all have

a corresponding RNG state and let each thread generate several variates. This is implemented

using a for loop and a tail iteration performed by a subset of threads if the number of random

variates can’t be evenly divided by the number threads (see line 8-18 in Listing 4).

A challenge associated with thread coarsening strategies is that they can lead to inefficient

memory access patterns. For best performance adjacent threads in the same warp should

read to and write from adjacent memory locations (i.e. operate on the same cache-lines). For

this reason we use a strided access pattern inside the loop on line 11 of Listing 4. This is a

well-known CUDA optimization pattern and is known as memory coalescing (see e.g. [15,

section 6.1]).

A potential negative performance impact of the implementation of the kernel in Listing 4 is

that the set up of each kernel is called multiple times, even though it would be sufficient to

compute these values once and store them. However, this is not a problem when the kernel is

compiled with optimization level 3 (O3) and the const keyword is used for the constants that
doesn’t have to be computed every time. Expression templates could be used to ensure that

the set up of the kernel is computed only once, however, this would increase the complexity

of the code substantially and without any benefit when compiling with high optimization

levels. Another, much simpler solution if the shape parameter ˛ is known at compile time

is to compute the constants in the kernels at compile using constexpr variables that are

available in C++. However, this requires the usage of experimental compiler features in

CUDA and therefore we chose not to do so.

The implementation of the gamma generators in CUDA was profiled using NVIDIA Nsight
Compute. The results from the profiling show that the implementations use the hardware

resources well. We compared the version of the gamma benchmark kernel that uses strided

memory access to a naive implementation not using any memory coalescing technique. The

Visual Nsight Compute tool report that the naive version have bad memory access patterns,

but this is not the case with the strided implementation. The Nsight Compute tool also report

that there is thread divergence in the kernel. This is nothing we can optimize away since the

algorithms have a stochastic control flow.

4.2 Verification of Implementations
We used a KS-test to verify that the implemented kernels produce gamma distributed random

numbers. For this we chose to use the KS-test method available in SciPy. We wrote the

data to binary files from C++ and used the fromfile method from NumPy to read the

binary data into NumPy arrays. The KS-test is based on a sample output consisting of

106 random numbers generated for each generator for three different values on the shape

parameter.
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4.3 CPU Implementation
The reference implementation on CPUwas implemented using std::gamma::distribution
from the the C++ STL random header. The timing measurements were made using the

std::chrono::steady_clock from the <chrono> header of the C++ STL. For the C++ code

we decided to the mersenne twister MT19937 as the PRNG, since it is efficient on CPU and

available in the C++ STL. We have not included the time it takes to initalize the RNG in

the measurements. The RNG state set up and gamma variate generation steps are shown in

Listing 5.

1 ...
2 std:: random_device random_device;
3 std:: mt19937 mt(random_device ());
4 std:: gamma_distribution <float > gamma_generator(alpha);
5 ...
6 auto t = std:: chrono :: steady_clock ::now();
7 for (auto &e: generated_data) {
8 e = gamma_generator(mt);
9 }
10 auto cpu_time = std:: chrono :: steady_clock ::now() - t;
11 ...

Listing 5: C++ reference implementation

4.4 Measurements
We measured the execution times for each gamma kernel when generating samples of

single precision floating-point numbers. We made the choice to measure the performance

for single-precision floating point numbers because a consumer grade GPU was used for

measurements and it has significantly worse double precision floating point performance

than single precision performance. In the high-end GPUs geared towards scientific computing

the double precision performance is usually much closer to the single precision performance.

The measurements were done for varying sample sizes between 222 � 4 � 106 and 228 �

268 � 106. The measurements were done for four different values of ˛ D 1:0001; 2; 4; 10.

The rejection rates of most gamma generation algorithms, including the ones we have used,

are very close to their limit value already at ˛ D 10. Hence, there is no need for higher

values of ˛ to be included in the comparison. The choice of ˛ D 1:0001 is because not all

algorithms are valid for ˛ D 1, and therefore the value ˛ D 1:0001 was used instead, which

is common in the literature.

For the GPU kernels, the measurements were recorded using cudaEvents to measure the

execution time of the kernel. Before each measurement a warm up iteration with the kernel

was run and then the kernel was executed 10 more times with each execution time recorded.

We did this for each sample size and value on ˛.
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4.5 Experimental Setup

4.5.1 Hardware
All benchmarks were performed on a Linux host running Ubuntu 22.04.3 LTS with Linux

kernel version 5.15.0-58-generic. The system has a processor of type AMD Ryzen 9 5950X

16-Core with clock frequency 3.4GHz and memory listed in table 6.

L1d cache 512 KiB

L1i cache 512 KiB

L2 cache 8 MiB

L3 cache 64 MiB

RAM 32GiB (2x16 GiB)

SSD 1TB

Table 6: Memory sizes of the system used and cache sizes for the AMD 5950X CPU.

The GPU used for the measurements was a NVIDIA GeForce RTX 4070 GPU. It has the Ada

Lovelace GPU architecture and 5888 CUDA cores. The memory sizes and clock speeds are

listed in Table 7 below.

GPU Architecture Ada Lovelace

CUDA Cores 5888

Base Clock 1.92 GHz

Boost Clock 2.48 GHz

RAM 12 GiB

Memory Interface 192-bit

Memory Bandwidth 504.2 GB/s

L1 Cache Size 192 KiB per SM

L2 Cache Size 36 MiB

Table 7: Summary of memory sizes and clock speeds for the NVIDIA GeForce RTX 4070 GPU

used for measurements.
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4.5.2 Compiler Environment
All code was compiled using NVCC version 12.2 (V12.2.140) and the profiling tools and

CUDA libraries used were all from CUDA-Toolkit version 12.2. We used Python version 3.12

for the verification tests with NumPy version 1.26.4 and SciPy version 1.12.0.

4.5.3 Random Number Generators
The performance of the gamma kernels is affected by the choice of uniform random number

generator. We used CUDA’s default RNG CURAND_RNG_PSEUDO_XORWOW for benchmarking

the CUDA kernels. This may seem like a strange choice, since it is known to have worst

statistical properties of the RNGs available in cuRAND. However, since many benchmarks

use the default CURAND_RNG_PSEUDO_XORWOW this makes it easier to compare our results with

other published work. The quality of the generator is also good enough that the output of all

gamma generators can be verified using a KS-test.

4.5.4 Grid and Block Configuration
When using persistent threads one generally wants to maximize the number of active threads

per SM. Instead, we chose a grid based on the maximum number of active thread blocks per

SM. CUDA provides the function cudaOccupancyMaxActiveBlocksPerMultiprocessor to

calculate the maximum number of active thread blocks per SM given the thread block size

and the CUDA device used. Below is an excerpt from the GammaBenchmark class, that show

how the grid parameters are computed from the thread block size.

1 cudaOccupancyMaxActiveBlocksPerMultiprocessor (&
max_active_blocks , gamma_pt_strided <RealType , GammaKernel >,
thread_block_size , device);

2 block.x = thread_block_size;
3 grid.x = max_active_blocks*deviceProperties.

multiProcessorCount;
4 // verifies kernel dims are supported by initRNG and device
5 verify_kernel_dims(block , grid , deviceProperties , &initRNG);

We used a 1-D grid and block and tested the kernels with the thread block sizes: 32, 64, 128,

256, 512, 1024. We found that 64 was the best block size for the kernels, but the other block

sizes smaller than 512 also perform well. We used a block size of 64 for the measurements

and this results in a a maximum of 24 active blocks on each of the 46 SMs of the NVIDIA

4070 GPU. This means that grid size is 1104, i.e. 70656 active threads, which is equivalent

to 12 times the CUDA cores available on the NVIDIA 4070 device used for measurements.

This shows that our implementation utilizes the full hardware resources available on the

device.
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5 Results & Analysis
In this chapter, we present the results of the performance measurements and the verification

of the kernels. In section 5.1, the results of the KS-test used for verification are presented.

Section 5.2 compares the times it takes to generate gamma random numbers on the GPU

with the different kernels. Then, in section 5.3, we compare the performance of the best and

worst gamma generator on the GPU with that of the C++ STL on a CPU (single thread). We

end this chapter with a discussion of our findings.

5.1 Verification of Output
The KS-test used to verify the correctness of the implemented algorithms is based on sample

outputs of size 106 for three different shape parameters for each generator. We have chosen

to test the generators with the shape parameters ˛ D 1:0001, ˛ D 2 and ˛ D 10. The reason

for this choice is that these three values represent different shapes of the gamma distribution.

For ˛ D 1:0001 the gamma distribution behave close to an exponential distribution, but

for ˛ D 2 the distribution resembles that of a Poisson distribution, and when ˛ D 10 then

gamma distribution is closer to a bell curve in shape. We report the value of the KS-test

statisticDn and the p-value of the test (rounded) in Table 8 below. It should be noted that

we want the KS-test statistic to be as close to 0 as possible and the p-value to be high. A low

p-value, would mean that we could reject the hypothesisH0 with high probability and that

the output of the generator is not likely gamma distributed. The p-value of the KS-test is

high for all of the generators except Cheng-Feast (GKM3).

All generators we study should theoretically produce gamma random numbers. The quality

of the random numbers generated depends on the quality of the uniform random number

generator used. However, even if the mathematics underlying the generators is correct it is

possible that numerical approximations make some of the algorithms less stable than others.

Based on our tests the Cheng-Feast (GKM3) algorithm seem to be an outlier with worse

statistical quality than the other generators.

Algorithm ˛ D 1:0001 ˛ D 2:0 ˛ D 10:0

Dn p-value Dn p-value Dn p-value

Cheng-Feast (GKM3) 0.0012 0.11 0.00094 0.34 0.0015 0.018

Marsaglia-Tsang 0.00059 0.88 0.00069 0.72 0.00072 0.67

Cheng (GA) 0.00067 0.76 0.00052 0.95 0.00074 0.64

Best (XG) 0.00069 0.73 0.00059 0.87 0.00062 0.84

Ahrens-Dieter (GC) 0.00063 0.83 0.00059 0.88 0.00064 0.80

Table 8: KS-test results of the algorithms for selected values of ˛.

Visualizations of the samples used for generating the KS-test statistics are given in Figures

8-12, which show histograms of the generated samples used for the KS-tests. We also include

the graph of p.d.f. of the gamma distribution for the value of ˛ used for comparison. The bin
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width used to generate each histograms is set such that 40 uniform bins exactly cover the

output sample and thus vary between the plots. It is not possible to tell from Figure 10 that

the Cheng-Feast (GKM3) generator performs worse than others on the KS-test.
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Figure 8: Histograms generated by a sample output of size n D 106 for the Ahrens-Dieter

(GC) generator and the p.d.f of the gamma distribution for three values of ˛.
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Figure 9: Histograms generated by a sample output of size n D 106 for the Cheng (GA)

generator and the p.d.f of the gamma distribution for three values of ˛.
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Figure 10: Histograms generated by a sample output of size n D 106 for the Cheng-Feast

(GKM3) generator and the p.d.f of the gamma distribution for three values of ˛.
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Figure 11: Histograms generated by a sample output of size n D 106 for the Marsaglia-Tsang

generator and the p.d.f of the gamma distribution for three values of ˛.
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Figure 12: Histograms generated by a sample output of size n D 106 for the Best (XG)

generator and the p.d.f of the gamma distribution for three values of ˛.

5.2 Comparisons between GPU kernels
In this section, we present and analyze the execution times of the different gamma generation

algorithms on a NVIDIA 4070 GPU. For each sample size the time taken to generate the

sample was measured a total of 10 times after a warm up iteration. In Figure, 13 the means

of our measurements are reported with errorbars corresponding to the sample variance of

the measurements. There are four subfigures corresponding to different shape parameters

˛. In Figure 14, the same data is reported for the best performing gamma kernels for each

shape parameter, and we have also included the time it takes to generate normal random

numbers using cuRAND’s device API with persistent threads. This allows us to compare the

time it takes to generate gamma random numbers with the time it takes to generate normal

random numbers on the GPU. We shall now analyze the the performance of each kernel

more in detail.

5.2.1 Marsaglia-Tsang
The Marsaglia-Tsang generator, is often one the recommended algorithms to use for gamma

generation in the literature (see e.g. [19]). It has a very low rejection rate and is among the

three best kernels for all values of ˛ we used in our benchmark. It is the second fastest of

all kernels tested for ˛ � 2. Overall the Marsaglia-Tsang generator perform very well and

can be used to efficiently generate gamma random numbers on the GPU for all ˛ > 1 , but

it is not the fastest generator. This may be surprising given the low rejection rates of this

algorithm, but each rejection sampling iteration of the kernel is expensive, since it requires a

normal random variate to be generated.

5.2.2 Ahrens-Dieter (GC)
The Ahrens-Dieter (GC) generator is also among the generators commonly mentioned in the

literature for gamma generation (see e.g. [19]). Even though this generator has much higher

rejection rates than the Marsaglia-Tsang generator the performance of the two generators is

very similar, with Ahrens-Dieter(GC) being the slightly slower of the two generators. The

reason for this is likely that the rejection sampling step is much more light-weight than in

Marsaglia-Tsang. Still, this generator can be used to efficiently generate gamma random

numbers on the GPU for all ˛ > 1.
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Figure 13: Measured generation times of the gamma kernels for four different shape parame-

ters on a NVIDIA 4070 GPU.

5.2.3 Cheng (GA)
The Cheng (GA) generator is the best performing of all generators we tested, across all values

for ˛. Even if the generator has higher rejection rates that the Marsaglia-Tsang generator

the Cheng (GA) generator is very light-weight in terms of computation. It doesn’t require

any samples from the normal distribution and sampling from the Burr XII distribution is

fairly efficient in terms of computation which makes this generator the best of all gamma

generators tested across all ˛. The time it takes to generate gamma random numbers with

the Cheng (GA) generator is within 2� the time it takes to generate normal random variates

with the cuRAND device API. This shows that the Cheng (GA) algorithm is well suited for

generating random numbers on the GPU.

5.2.4 Best (XG)
The Best (XG) algorithm perform poorly compared to the other algorithms across the entire

range of ˛ tested. One of the key advantages of Best’s algorithm on the CPU, is a rejection

step which we have removed in our implementation. Based on our results this generator can

not be recommended for use on the GPU.
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Figure 14: Measured generation times of the best performing gamma kernels for four different

shape parameters, and a normal generator using the cuRAND device API as a reference in

black, on a NVIDIA 4070 GPU.

5.2.5 Cheng-Feast (GKM3)
The Cheng-Feast (GKM3) generator perform very well for ˛ D 1:0001 but the performance

quickly deteriorates as ˛ increases and it performs worst of all generators for ˛ � 4. We

believe the reason for this deteriorating performance is is due to an extra branch in the

(GKM2) algorithm that is used for ˛ > 2:5, which leads to higher thread divergence than

the other kernels. However, using the (GKM1) algorithm across the entire range of ˛ is not

feasible, because the rejection rate rapidly gets too high for ˛ > 3. Thus, based on our results

the Cheng-Feast (GKM3) algorithm can not be recommended for use on the GPU.

5.3 Comparisons between GPU and CPU
We also measured the time it takes to generate random numbers on a traditional CPU using

the C++ STL. The speedups of the GPU generators compared the C++ version on an AMD

Ryzen 5950X CPU is displayed in Figure 15 below. We note that Cheng (GA) is the algorithm

displaying the highest speedup. When the shape parameter ˛ � 2 then the Cheng (GA) GPU

kernel is more than 1000� faster than then the reference CPU generator.

It should be noted that these measurements doesn’t include the data transfer times between

CPU and GPU, but the results clearly show that it can more efficient to perform gamma
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Figure 15: Speedups of the CUDA gamma kernel implementation compared to the CPU

reference implementation (C++ STL single thread).

random number generation on GPUs than on CPUs.

5.4 Summary of Results
Three of the gamma generation kernels tested perform well on the GPU with generation

times 1 � 10� the time it takes to generate normal random variables using the cuRAND

device API and persistent threads. We list them below (fastest to slowest):

1. Cheng (GA)

2. Marsaglia-Tsang

3. Ahrens-Dieter (GC)

Among the three generators listed above, Cheng (GA) is clearly the fastest on GPU. The

Marsaglia-Tsang and Ahrens-Dieter (GC) are very similar in performance, but Marsaglia-

Tsang is the faster of the two. Using the Cheng (GA) algorithm for generating gamma

random numbers gives a 2 � 3� speedup compared to the other two generators, All three

generators generate gamma distributed random numbers and have high p-values in the KS-

tests performed. Thus, Cheng (GA) should be the preferred generator for anyone who want

an efficient and correct algorithm for generating gamma random numbers on GPUs.
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6 Conclusions
With the increasing use of GPUs for computation the need for efficient random number

generation algorithms on GPUs is as ever important. In this thesis, we have looked at the

possibility to efficiently generate gamma random numbers on GPUs. Our results have shown

that the best performing algorithm for generating gamma random numbers on GPUs can

generate gamma randomnumbers at more than half the speed normal random numbers can be

generated on GPUs. This corresponds to a 1000� speedup when generating gamma random

numbers on a NVIDIA 4070 GPU compared to an AMD 5950X CPU (single threaded).

6.1 Conclusions
We have shown that it is possible to efficiently generate gamma random numbers on GPUs.

Not only compared to CPUs, but the time it takes to generate gamma random numbers with

the best algorithm tested is roughly 1:5 � 2� the time it takes to generate normal random

numbers on the GPU. This shows that with the right choice of algorithm gamma generators

can be included in Monte Carlo and stochastic simulation code for GPUs without fear of bad

performance. Especially, practitioners should not be afraid of using gamma random number

generators on the GPU, even if the underlying algorithm is rejection sampling.

Based on our results the preferred gamma generator to use on the GPUs is the Cheng (GA)

generator. It performs best of all generators we tested for all shape parameters. The Cheng

(GA) algorithm is not often mentioned in the literature, but a variation of this algorithm

Cheng (GB), from the same article [7], is more common. The Cheng (GB) algorithm includes

an extra squeeze step and performed much worse than (GA) in our initial experiments (due to

increased thread divergence). It is interesting to note that the performance of the generators

tested on the GPU differ a lot from what has been reported in the literature which is focused

on CPUs (see e.g. [29]). This, is not surprising, since GPUs and CPUs are architecturally

very different, but it shows that there is a gap in the knowledge of efficient RNG algorithms

on GPUs, which the results of this thesis partially fill.

One main take away from our results is that it is generally beneficial to use generators

with fewer branches and remove squeeze steps on GPUs. This means that one should trade

branches for increased compute loads instead. This should hold true in general for rejection

sampling schemes on the GPU, and our findings clearly indicate that simple kernels with less

branches outperform the kernels with more branches such as the Best (XG) and Cheng-Feast

(GKM3) algorithms which perform much worse than the other algorithms.

6.2 Limitations
In this thesis, we have focused on a selection of the existing algorithms for gamma generation

and evaluated their performance on GPUs. We made our selection of algorithm with the

architecture and performance characteristics of GPUs in mind, but it is possible that there

are other gamma generation algorithms that perform even better on GPUs and was discarded

in our selection phase. Furthermore, we focused on generators for shape parameters ˛ > 1.

As we discussed in Chapter 3, a gamma variate with shape parameter ˛ D ˛0 C 1 > 0 can

be cheaply transformed into a gamma variate with shape parameter ˛0, and the algorithms

evaluated can therefore be used to generate gamma random numbers for shape ˛ � 1.
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However, it is possible that some of the existing algorithms for shape parameters ˛ � 1

perform better than the algorithms we have tested for ˛ in that range.

We only performed measurements on a NVIDIA 4070 GPU, and there are many other GPU

models available, both fromNVIDIA and other hardware vendors. One of themain differences

between the GPU used and the professional series of GPUs available by several manufacturers

is that the professional GPUs tend to have better double precision performance that scale

proportionally to the single-precision performance. This is not the case with the NVIDIA

4070 GPU used for measurements and therefore we limited ourselves to single precision

floating point numbers in our measurements.

6.3 Future Work
Our work show two promising areas for future research. Firstly, there exists a rich collection

of algorithms for generating random numbers for other distributions than the gamma

distribution where the performance of the algorithms on GPUs still remain to be tested. We

believe that it would be highly valuable for pracitioners to learn which algorithms are best

suited for use on the GPU as it often differ from the CPU.

Secondly, traditional CPUs have evolved much during the last 40 years and some of the

comparisons between random number generators are based on results which are more than

40 years old. On modern CPUs branches can have a huge negative impact on performance,

just like on GPUs and it would be interesting to test whether these results are still valid or if

the state of art has changed.

6.4 Reflections
We have shown that using GPUs instead of CPUs can lead to a 1000� increase in performance

when generating gamma random numbers. Especially, we have shown that there exist

algorithms for gamma random number generation that can be used efficiently on GPUs.

Our results can help researchers and GPU programming professionals make better choices

when designing and writing code that require gamma generators and help speed up their

codes.

There are many examples where our results could be applied to optimize the performance

of existing code. In [49], the authors use a generator from [7], but they do not write which

one and they cooperate between threads to generate their samples. When using the Cheng

(GA) generator that we recommend this approach leads to worse performance in light of

the results in [43]. Furthermore, the Marsaglia-Tsang generator is often mentioned for use

on the GPUs due the low rejection rates (see e.g. [43]) but based on our results a 2:5 � 3�

speedup can be achieved by switching to the Cheng (GA) generator.

In the end, our results can be used optimize current software leading to reduced energy

consumption. This is positive from a sustainability perspective and also leads to a reduced

cost of running the software. Furthermore, the knowledge that gamma random numbers can

be generated efficiently on GPUs open up new possibilities when designing scientific models

in a wide range of disciplines where the gamma distribution is used.
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