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These notes (and the presentation) are primarily based on the lecture notes
(lecture 1-4) by Terrence Tao, posted on his blog [Tao08]. It is inspired
by the article Topological dynamics and combinatorial number theory by
Furstenberg & Weiss [FW78]. Furstenberg has also written a book on on the
subject and this material is covered in chapter 1 & 2 of that book [Fur].

The aim of the lecture was to introduce the basic concepts in topological
dynamics needed to prove Van der Waerden’s theorem with the approach of
Furstenberg & Weiss. VW’s theorem is a standard result in Ramsey theory
[GRS90]. Which essentially is the study of how certain properties of sets
are preserved under partitions. Many classical theorems in Ramsey Theory
are colouring theorems of this type for example the well known Hales-Jawett
theorem.

I feel obliged to mention that, in his lecture notes, Tao also takes the approach
to the subject through ultrafilters and many of the proofs are very neat. If you
are interested I recommend looking at those notes. I would also recommend
looking at the book Algebra in the Stone-Čech compactification by Hindman
& Strauss[HS98].
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1 Van der Waerden’s Theorem

There are two short remarks to be made about the notation used.

(1) N = {1, 2, ...} i.e. the positive integers and

(2) ⊂ denotes proper subset, while ⊆ denotes subset or equal to

Definition. A k-term Arithmetic progression is a sequence of natural
numbers on the form: {u+ jd}k−1j=0 .
on the form:

i.e. u, u+ d, u+ 2d, . . . , u+ (k − 1)d

Theorem 1 (Van der Warden’s Theorem). Any colouring of the positive
integers into m colours will yield at least one colour which contain arbitrarily
long arithmetic progressions.

In set theoretic terms:

Let : N = C1 ∪ C2 ∪ · · · ∪ Cm

then one of the sets Cj contains arbitrarily long arithmetic progressions.

There are many equivalent statements to Van der Warden’s theorem, here
are three of them [LR04]:

(i) ∀ k ≥ 2 any 2-colouring of N admits a monochromatic arithmetic pro-
gression of length k

The statement above was Conjectured by I.Schur and is the version VW
proved in 1927.

(ii) ∀ k, r ≥ 2 there is a least positive integer w(k, r) such that when n ≥ w
every r-colouring of [n] there is a monochromatic arithmetic progression of
length k.

(iii) ∀ k, r ≥ 2 any r-colouring of N admits an arithmetic progression of
length k.
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2 Topological Dynamical systems

Definition. ATopological dynamical system (X, τ, T ) is compact metriz-
able topological space (X, τ) with a homeomorphism T : X → X.

SinceX is compact and metrizable it follows from Usrysohn’s metrization the-
orem that X is second-countable and Hausdorff. Connecting to C∗-algebras
we can view T as a C∗-Algebra isomorphism, T : C(X)→ C(X).

Definition. A subsystem (E, T ) of a dynamical system (X,T ) is a subset,
∅ 6= E ⊆ X, which is T -invariant (i.e. T nE = E) and such that (E, T |E)
satisfies the properties of a dynamical system.

When considering subsystems the topology is the subspace topology. Notice
that in a topological dynamical system X is Hausdorff, and since every com-
pact subset E ⊂ X of a Hausdorff space is closed it follows that if (E, T ) is
a subsystem of (X,T ) then E must be closed.

Definition. A minimal dynamical system is a dynamical system (Y, T )
with no proper subsystems. (By proper we mean a subsystem (E, T ) such
that E ⊂ Y .)

It follows that two minimal topological dynamical are either disjoint or con-
incident.

Definition. The orbit of a point x ∈ X is the set

T Z(x) := {T nx : n ∈ Z}

It is a good guess that orbits are closely connected to minimal systems how-
ever every orbit is not a minimal topological dynamical system. One problem
is that an orbit may not be closed and hence not compact. However for every
element the closure of the orbit T Zx is a subsystem but this may not be a
minimal system. We have the following important property which is one of
the homework problems:

Problem 1. Show that (X, τ, T ) is a minimal topological dynamical system
if and only if for every element in X the orbit closure is dense in X.

A natural question to ask is whether every topological dynamical system
contains a minimal dynamical system, which turns out to be true. But
unfortunately every topological dynamical system can’t be decomposed into
a collection of minimal dynamical systems since an orbit closure may not be
minimal.
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Lemma 1. Every topological dynamical system contains a minimal dynam-
ical system.

Proof. Let (X, τ, T ) be a topological dynamical system. Consider a collection
{Eα} of subsystems of X. Since X is compact and every subsystem is closed
and nonempty it follows from the finite intersection property that their inter-
section is nonempty. Furthermore the intersection is closed and T -invariant
since arbitrary intersections of closed sets are closed in a topological space
and intersections of T -invariant sets are T -invariant. We can now consider
this as a partially ordered chain of subsystems ordered by inclusion: Eα < Eβ
if Eβ ⊂ Eα. Now by Zorn’s lemma there exists a maximal element which by
definition is a minimal topological dynamical system.

We classify points in a topological dynamical system after the behaviour of
their orbits T Z(x) and to do this we need to place a metric on X (with respect
to our metrizable topology). The choice does not matter as the metrics are
topologically equivalent. From this we conclude that it makes sense to use
the metric when categorising points in the space X as their behaviour will be
the same under all topologically equivalent metrics. It should also be noted
that continuous functions between two compact metric spaces are uniformly
continuous and it follows that the homeomorphism T is uniformly continuous.
Thus:

∀ ε > 0 ∃ δ > 0 s.t ρ(x, y) < δ =⇒ ρ(T nx, T ny) < ε

Definition (Classification of points). We say that:

x is invariant provided T Z(x) = x

x is periodic provided ∃n ∈ Z s.t. T n(x) = x

x is almost periodic provided {n ∈ Z : ρ(T n(x), x) < ε}

is syndetic for all ε > 0

x is recurrent provided {n ∈ Z : ρ(T n(x), x) < ε} is infinite for all ε > 0

Syndetic means that the set has bounded gaps. This meansN ⊂ Z is syndetic
provided there exists an integer p such that

{k − p, ..., k − 1, k, k + 1, ..., k + p} ∩N 6= ∅, ∀ k ∈ Z
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We are now ready to prove some results about recurrence in topological
dynamical systems.

Theorem 2. Let (X, τ, T ) be a topological dynamical system and let {Uα} be
an open cover of X. Then there exists an element of the cover, Uα′ satisfying:

Uα′ ∩ T nUα′ 6= ∅ for infinitely many n

Proof. Since X is compact we can choose a finite subcover {Uαn} of {Uα}.
Let x′ be a point of X and consider the orbit:

T Zx′ = {T nx′ : n ∈ Z}

Notice that the orbit may be finite but it trivially contains x′ for infinitely
many n. From the infinite pigeonhole principle it follows that one of the
covers say Uα′ in the finite subcover must contain infinitely many n, i.e.

there exists an infinite subset N ⊂ Z such that TNx′ ⊆ Uα′

The cover element will satisfy the property of the theorem. Let n′ ∈ N then
by the definition of N , T n′x′ ∈ Uα′ . For every n ∈ N the set T−nTNx′
contains x′ as T nx′ ∈ TNx′. And since TNx′ ⊂ Uα′ it follows that:

T n
′
x′ ∈ Uα′ ∩ T n

′−nUα′ , ∀ n ∈ N

Which proves the theorem as N is an infinite set.

Lemma 2. In a minimal topological dynamical system (X, τ, T ) every ele-
ment is almost periodic.

Proof. We prove this by contradiction. Assume there exists a point x ∈ X
which is not almost periodic. i.e.

∃ ε > 0 such that N = {n ∈ Z : ρ(T nx, x) < ε} isn’t syndetic.

Which means that for every p ∈ N we can find a set on the form Tp =
{kp − p, ..., kp, ..., kp + +p} such that ρ(T kx, x) ≥ ε for any k ∈ Tp. We can
therefore construct the sequence {T kpx} which has a convergent subsequence
kpj with a limit x′ in X since X is a compact metric space. Furthermore the
continuity of T and the construction of the sequence kpj from the unbounded
set implies that for any n ∈ Z:

ρ(T nx′, x) = lim
j→∞

ρ(T kpj+nx, x) ≥ ε
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By Problem 1, X is minimal iff the orbit of every point is dense in X. But
in the above equation T Zx′ 6= X which is a contradiction to the minimality
of X.

By combining Lemma 2. and the fact that every topological dynamical sys-
tem contains a minimal system (Lemma 1.) we get the following theorem:

Theorem 3 (Birkhoff recurrence theorem). Every topological dynamical sys-
tem contains a point x which is almost periodic.

Note that this is stronger than Theorem 2 which said that we could find a
an element of every open cover Uα′ such that Uα′ ∩ T nUα′ 6= ∅ for infinitely
many n. By choosing a cover element, Uα∗ which contains an almost periodic
point we can even say that the set N = {n ∈ Z : T nUα∗ ∩ Uα∗ 6= ∅} is
syndetic.

The following theorem is The topological counterpart of Van der Waerden’s
Theorem.
Theorem 4 (Topological Van der Waerden’s Theorem). Let C = {Uα} be an
open cover of Topological dynamical system (X, τ, T ) and k ∈ N then there
exists a set, Uα′, in C, satisfying:

Uα′ ∩ T−rUα′ ∩ · · · ∩ T−(k−1)rUα′ 6= ∅ for infinitely many r

The idea of how ones goes from Theorem 4 to the standard combinatorial
Van der Waerden’s Theorem is by considering the power set, Ω = ΓZ, where
Γ = {1, 2, ..., r}. Thus one can think of an element ω of Ω as a function
ω : Z→ Γ. In fact Ω is a compact metric space under the metric

ρ(ω1, ω2) := inf

{
1

m+ 1
: ω1(n) = ω2(n) for |n| < m

}
and the shift map S : Ω → Ω by ω(n) 7→ ω(n + 1) is a homeomorphism.
Then Ω contain the colouring map, c, corresponding to our partition of N
defined by: {

c(n) = m if n ∈ Cm & if n > 0

c(n) = 1, if n ≤ 0

If you want to read the full proof I recommend the original article by Fursten-
berg & Weiss [FW78]

6



joheric@kth.se

More generally given a compact metrizable space Γ one can always define a
metric on the space ΓZ by

ρ
(
{γ1n}n∈Z, {γ2n}n∈Z

)
:=
∑
n∈Z

2−|n|ρ
Γ
(γ1n, γ

2
n)

Where γi ∈ ΓZ is represented by the sequence, {γin}n∈Z in Γ.

The proof of Theorem 4. goes by Theorem 5.

Theorem 5. Let C = {Uα} be an open cover of Topological dynamical system
(X, τ, T ) and k ∈ N then there exists a set, Uα′, in C, which contains an
arithmetic progression:

{T rx, T 2rx, . . . , T (k−1)rx} ⊆ Uα′ for some x ∈ X and r ∈ N

Theorem 5. actually implies Theorem 4. This can be proven by considering
the system (X × Zn, S) with the map S : (x,m) 7→ (Tx,m + 1). For a
fixed k, consider the open cover {Uα × {m}} with α in some index set A and
m ∈ Zn. By Theorem 5. we know that there exists a cover element Uα′ ×
{j} which contains an arithmetic progression of the form (x,m), (Tx,m +
1), ..., (T (k−1)rx,m + (k − 1)r). But there will also be an open cover if we
increase n to say N and instead consider the system (X × ZN , S). But if
we choose N large enough we can make sure that that the set {j} does not
contain {r, ..., (k − 1)r (mod N)} for any j ∈ {1, ..., N}. However there will
still exist a recurrent set as in Theorem 5. but for a larger value on r. By
this method one can show that for any r > 0 there is a cover element, Uα′
which contains a set {x, Tx, T rx, ..., T (k−1)rx}. And to show that there exists
a cover element such that this holds for infinitely many r, for a given k,
one simply covers X by a finite subcover and applies the infinite pigeonhole
principle.

In order to prove Theorem 5. we must use the following Lemma.

Lemma 3. Let (X, τ, T ) be a minimal topological dynamical system and U ⊆
X be nonempty and open. Then X can be covered by a finite number of
translates of U , i.e.

X =
k⋃
j=1

T njU

Proof. Since T is a homeomorphism and U is open, every translate T nU will
also be open. Therefore⋃

n∈Z

T nU is open which implies that the set X r
⋃
n∈Z

T nU is closed
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However since X is minimal this closed set can’t be a subsystem and must
therefore be the empty set. Which means that the collection {T nU}n∈Z is an
open cover of X. Compactness implies that there is a finite subcover.

∴ ∃ {nj}kj=1 ⊂ Z such that X =
k⋃
j=1

T njU

The next theorem follows directly from Lemma 3. and Theorem 5.

Theorem 6. Let (X, τ, T ) be a minimal topological dynamical system and
U ⊆ X be nonempty and open. Then for every k ∈ N there is an arithmetic
progression:

{T rx, T 2rx, . . . , T (k−1)rx} ⊆ U for some x ∈ X and r ∈ N

We are now ready to prove Theorem 5. It is a proof by induction over k and
the core idea is contained in the colour focusing Lemma.

Proof of Theorem 5. First consider the case k = 1. Then the Theorem 5.
follows from Theorem 2.

Next assume that Theorem 5. is true for k − 1. Let (Y, τ, T ) be a minimal
dynamical subsystem ofX. And let {Uα} be a finite open cover of Y . In order
to show that one of the cover elements Uα′ contains an arithmetic progression
of the form {x, T rx, . . . , T (k−1)rx} we use the following lemma

Lemma 4 (Colour focusing). Let (Y, τ, T ) be a minimal dynamical system
and {Uα} an open cover. Then for any j ≥ 0 there is a sequence x0, . . . , xj
of points in X, a sequence, Uα0 , . . . , Uαj

, of sets in the open cover (may not
be distinct), and a sequence r1, . . . , rj of positive integers satisfying:

T i(ra+1+···+rb)xb ∈ Uαawhen

{
0 ≤ a ≤ b ≤ j

1 ≤ i ≤ k − 1

Proof. This is proved by induction over j. The case when j = 0 is simply
the trivial case T 0 = Id and is obviously true.

Next assume that the lemma holds for j − 1. Then there exists sequences
r1, ...., rj−1, U0, ..., Uj−1, and x0, ..., xj−1 such that

T i(ra+1+···+rb)xb ∈ Uαa , when

{
0 ≤ a ≤ b ≤ j − 1

1 ≤ i ≤ k − 1
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Theorem 5. holds for k − 1 and therefore Theorem 6. also holds for k − 1.
Consider an open set V containing xj−1. By Theorem 6. there is a subset
{y, T ry, ..., T (k−2)ry}. Let rj = r and define xj := T−rjy. Furthermore choose
a cover element Uj containing xj then provided V is as above and contained
in Uj (we can always find such a V ) we get

T i(ra+1+···+rj)xj = T i(ra+1+···+rj−1)T (i−1)rjy ∈ T i(ra+1+···+rj−1)V

Notice that i− 1 < k − 1 hence T (k−1)rjy ∈ V . And this holds for 1 ≤ a < j
and i ≤ i ≤ k − 1 which proves the Lemma.

To complete the proof of Theorem 5. we consider the finite cover of Y . Let
j be the cardinality of the finite cover of Y , i.e. |{Uα}| = j. Then by the
lemma for j there must be two cover elements in the collection of j + 1 (not
necessarily distinct) cover elements which are equal, say Uαa = Uαb

. Define
x := xb and r := ra+1 + · · ·+ rb then it follows that

{x, Tx, . . . , T (k−1)r} ⊂ Uαa = Uαb

A generalisation of the Topological Van der Waerden’s theorem is theMultiple
Birkhoff Recurrence Theorem and this can be applied to prove equidistribu-
tional properties of sequences and that’s used in Problem 2.

Theorem 7 (Multiple Birkhoff recurrence). For any k ∈ N every topological
dynamical system (X, τ, T ) contains a point x ∈ X s.t. there is a sequence
of integers {rj} → ∞ satisfying:

lim
j→∞

T irjx = x, for all 0 ≤ i ≤ k − 1

Problem 2. Use the Multiple Birkhoff Recurrence theorem to show that for
any real number α there is a sequence of a integers nj →∞, such that:

lim
j→∞

dist(n2
jα,Z) = 0

Hint: Consider X = (R/Z)2 and the map T (x, y) = (x+ α, x+ y).
Remark: You must show that the system is indeed a TDS
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