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My intention when writing this text was to summarize the most basic con-
cepts and central theorems of Complex Analysis in a concise manner. Hope-
fully you will find it a useful reference. If you find any errors please email me
at:

joheric@kth.se
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Complex Identities

Some notation:
Let z, w ∈ C. If z = α + iβ then z := α − iβ denotes the conjugate of
z.

Absolute value

|z| =
√
α2 + β2

|z + w| ≤ |z|+ |w| (triangle inequality)

|z − w| ≤ |z| − |w| (reverse triangle inequality)

|zw| = |z||w|

|z|2 = zz

1

z
=

z

|z|2
(when z 6= 0)

Re(z) ≤ z, Im(z) ≤ z

Re(z) =
z + z

2
, Im(z) =

z − z
2i

Conjugate

z + w = z + w

zw = zw

Trignometric identities

z = reiθ

eiθ = cos(θ) + i sin(θ)

cos(z) =
eiz + e−iz

2
sin(z) =

eiz − e−iz

2i

cosh(z) :=
ez + e−z

2
sinh(z) :=

ez − e−z

2
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The logarithm function

arg z := θ, when z = reiθ =⇒ arg(z) = ϕ+ 2kπ ϕ ∈ (−π, π], k ∈ Z

Arg z is said to be the principal value of arg z and is defined by

Arg z := ϕ ∈ (−π, π] when arg z = ϕ+ 2πk k ∈ Z

We define the logarithm for z ∈ Cr {0} as

log z := Log |z|+ i arg z (Log |z| is the natural logarithm (i.e. ln |z|)

The principal value of the logarithm is defined as

Log z := Log |z|+ iArg z

Log z is analytic in the Domain Ω = Cr (−∞, 0] with derivative

d

dz
Log z =

1

z
for z in Ω

Complex Powers
The definition of a complex power for z 6= 0 and α ∈ C is given by

zα := eα log z

The principal branch of zα is given by eαLog z. This function is analytic in
the domain Ω defined above with the derivative

d

dz
eαLog z = {the chain rule} =

α

z
eαLog z

Harmonic functions
A function u : R2 → R is harmonic if

∆u = ∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0

If a function f(z) = u(x, y) + iv(x, y) is holomorphic in an open set Ω then
the functions Re(z) = u and Im(z) = v are harmonic.
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Convergence and Completeness of C

A sequence {zn} in C is said to converge to w ∈ C if:

lim
n→∞

|zn − w| = 0, we write lim
n→∞

zn = w or zn → w as n→∞

Lemma: zn → w if and only if

{
limn→∞Re(zn) = Re(w)

limn→∞ Im(zn) = Im(w)

Definition A sequence is said to be a Cauchy seqeunce or simply Cauchy
if:

given ε > 0 ∃N ∈ N : n,m ≥ N =⇒ |zn − zm| < ε

Remark. {zn} is Cauchy if and only if {Re(zn)} and {Im(zn)} are.

Theorem: C is complete in the sense that every Cauchy sequence in C
converges.

Sets in the complex plane and some topology

Let z0 ∈ C and r ∈ R+

Dr(z0) = {z ∈ C | |z− z0| < r} The open disc centered at z0 with radius r0

Dr(z0) = {z ∈ C | |z−z0| ≤ r} The closed disc centered at z0 with radius r0

Cr(z0) = {z ∈ C | |z − z0| = r} The circle centered at z0 with radius r0

D = {z ∈ C | |z| < 1} The unit disc

Definition: Let Ω ⊂ C. z0 is an interior point of Ω if:

∃r > 0 : Dr(z0) ⊂ Ω

Definition: A set Ω ⊂ C is open if every point of the set is an interior
point.

Definition: Ω is closed if Ω{ = Cr Ω is open.
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Lemma: A set is closed if and only if it contains all its limit points

Definition: A point z ∈ Ω is called a limit point of Ω if there exists a
sequence:

{zn} ∈ Ω : zn → z

Equivalently z is a limit point of Ω if every open neighbourhood of z inter-
sects Ω in some point other than z.

Definition: The closure of Ω, denoted Ω is the intersection of all closed sets
containing Ω. It follows that:

Ω = Ω ∪ {limit points of Ω}

Definition: A collection of open sets C such that

Ω ⊆
⋃
U∈C

U

is called an open cover of Ω

Definition: A set Ω is compact if every open cover of

Since the complex numbers are a comlete metric space the classical Heine-
Borel Theorem holds:

Theorem: (Heine-Borel) Every closed and bounded subset of C is com-
pact.

Definition: A set Ω is bounded if there exists number:

M ∈ R+ : z ∈ Ω =⇒ |z| ≤M

Remark. Ω ⊂ C is compact if and only if every sequence in Ω has a subse-
quence that converges to a point in Ω.

Definition: The diameter of Ω;

diam(Ω) := sup
z,w∈Ω

|z − w|

Lemma: If Ω1 ⊃ Ω2 ⊃ ... ⊃ Ωn ⊃ ... is a sequence of non empty compact
sets in C with the property:

diam(Ωn)→ 0 as n→∞

then there exists a unique w ∈ C such that w ∈ Ωn for all n ∈ N
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Homotopy and simply connected domains

From now on when talking about a curve what is really meant is a piecewise
smooth curve. Let γ0, γ1 be two closed curves in a topological space X, with
parameter interval I = [0, 1]. The curves γ0, γ1 are said to be homotopic if
there is a continuous mapping

H : I2 → X : H(s, 0) = γ0(s), H(s, 1) = γ1(s), H(0, t) = H(1, t)

If two curves are homotopic this means that they can be continuously defor-
mable into each other within the space X.

A curve γ is said to be null-homotopic in X if it is homotopic to a constant
mapping (i.e. a point in X).

A simply connected domain in C is a connected subset Ω ⊂ C in which
every closed curve is null-homotopic

This means that every closed curve, γ1, in a simply connected domain
Ω is homotopic to and can be continuosly deformed into any other
closed curve γ2 in Ω. Some important results follow from this which will
not be proven here as they would require involving new concepts. Proofs of
some of the following statements and theorems can be done by introducing
the concept called index or winding number of a point with respect to the
curve1. A fair amount of topology is also needed2.

Theorem (Deforming invariance theorem)
Let Ω be a domain (open connected subset of C). If the closed curves γ0, γ1

are homotopic in Ω and f ∈ H(Ω) then∫
γ0

f(z)dz =

∫
γ1

f(z)dz

It follows that in a simply connected domain the value of an integral
of a function holomorphic in that domain is the same for any closed
curve in that domain. Therefore when proving results, such as Cauchy’s
Theorem for a circle, subset of a simply connected domain, the same result
will hold for any closed curve in the domain.

1More information on the subject may be found in Rudin’s Real and Complex Analysis
or Ahlfors Complex Analysis

2Which can be found ind Munkres’ Topology or Lee’s Introduction to Topological Ma-
nifolds
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Important Theorems and Results

Theorem (Cauchy Riemman Equations)
Let f ∈ H(Ω) then f can be expressed as f = u(x, y)+iv(x, y) and furthermore
u, v satsify the Cauchy Riemann Equations

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂y

Proof idea Since f is holomorphic in z then the limit in the derivative must
be equal if we approach z from the real axis and the imaginary axis. Compare
those limits and this Implies that Cuachy Riemann are satisfied.

Notice that the following proof of Cauchy’s Integral theorem does not rely
on the continuity of the partial derivatives u(x, y), v(x, y) as the proof taking
the vector analysis approach with Green’s theorem.

Cauchy’s Integral Theorem for a disc If f is holomorphic in a disc, then
for any closed curve γ ⊂ D ∫

γ

f(z)dz = 0

The idea of the proof is to show that f has a primitive inside the disc and
then the integral is easily calculated and 0 since the curve is closed.

Step 1. Lemma (Goursat’s Theorem)
Let T be a closed triangle and T ⊂ Ω open. The for any f ∈ H(Ω)∫

∂T

f(z)dz = 0

It follows that if R is a closed rectangle s.t. R ⊂ Ω then∫
∂R

f(z)dz = 0

Step 2. Show that a holomorphic function in a disc D has a primitive in
that disc.

Without loss of generality assume the disc is centered at 0. Since this can be
achieved by translation. Define the curve γz as the horizontal line segment
from 0 to Re(z) and then the vertical line segment from Re(z) to z. Let

F (z) =

∫
γz

f(w)dw
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We will show that this is the primitive of f(z) in the disc. Consider

F (z + h)− F (z) =

∫
γz+h

f(w)dw −
∫
γz

f(w)dw

For small h so that (z + h) ∈ D

With some geometry and Goursat’s Theorem it follows that

F (z + h)− F (z) =

∫
ν

f(w)dw

Where ν is the straight curve joining z and z + h. Since h is small and f is
continuous we can express

f(w) = f(z) + ψ(w) where ψ(w)→ 0 as w → z

Hence

F (z + h)− F (z) =

∫
ν

f(z)dw +

∫
ν

ψ(w)dw = f(z)h+

∫
ν

ψ(w)dw

For the second term we have

lim
h→0

∣∣∣∣∫
ν

ψ(w)dw

∣∣∣∣ ≤ lim
h→0

h sup
w∈ν
|ψ(w)| = 0 =⇒ lim

h→0

∫
ν

ψ(w)dw = 0

Thus
lim
h→0

F (z + h)− F (z) = lim
h→0

f(z)h ⇐⇒ F ′(z) = f(z)

Step 3. Since f has a primitive in Ω the integral is easily calculated∫
γ

f(z)dz = F (z0)− F (z0) = 0

�

Cauchy’s Integral formula let f ∈ H(Ω) and D ∈ Ω. If C denotes the
boundary of D in positive orientation, then

f(z) =
1

2πi

∫
C

f(w)

w − z
dw for z ∈ D

The main idea of the proof is to consider the keyhole contour and letting the
radius of its circle and the width approach zero.
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Let Γδ,ε be the keyhole which inner circle is centered at z and has radius ε
with the width of the corridor δ. By Cauchy’s Integral theorem we know that
the integral over Γδ,ε is 0. And γ1 → −γ2 when δ → 0. Hence

lim
δ→0

∫
Γδ,ε

f(w)

w − z
dw = 0 =

∫
C

f(w)

w − z
dw +

∫
Cε

f(w)

w − z
dw

Equivalently:

∫
C

f(w)

w − z
dw = −

∫
Cε

f(w)

w − z
dw

Now rewrite
f(w)

w − z
=
f(w)− f(z)

w − z
+

f(z)

w − z
thus ∫

Cε

f(w)

w − z
dw =

∫
Cε

f(w)− f(z)

w − z
dw +

∫
Cε

f(z)

w − z
dw

Considering the first term∫
Cε

f(w)− f(z)

w − z
dw ≤ l(Cε) sup

w∈Cε

∣∣∣∣f(w)− f(z)

w − z

∣∣∣∣ ≤ 2πε sup
w∈Cε

|f(w)− f(z)|
ε

Letting ε→ 0 yields the following result as f is continuous

lim
ε→0

∫
Cε

f(w)− f(z)

w − z
dw ≤ 2π|f(w)− f(w + ε)| = 0

We get

lim
ε→0

∫
C

f(w)

w − z
dw =

∫
C

f(w)

w − z
dw = lim

ε→0
−
∫
Cε

f(z)

w − z
dw = −f(z)

∫
Cε

dw

w − z

Since Cε is centered at z with clockwise direction we can parametrize the
curve as {

w = z + εe−iϕ

dw = −εie−iϕdϕ
for ϕ ∈ [0, 2π]

With this parametrization it is clear that∫
C

f(w)

w − z
dw = −f(z)

∫ 2π

0

idϕ = f(z)2πi ⇐⇒ f(z) =
1

2πi

∫
C

f(w)

w − z
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�

Remarks

(i) This holds for any contour Γ homotopic to C inside the simply connected
domain Ω in which f is holomorphic.

(ii) If z is a point outside of Γ then the integral vanishes. (follows from
Cauchy’s Integral Theorem)

(iii) By induction one can show that under the assumptions above, f has
infinitely many complex derivatives in Ω and those are given by

f (n)(z) =
n!

2πi

∫
Γ

f(w)

(w − z)n+1
dw for z in the interior of Γ

Lemma (Cauchy’s Inequalities)
Let Ω ⊂ C be open such that f ∈ H(Ω) and DR(z0) ⊂ Ω. If C denotes the
boundary of DR(z0) then

|f (n)(z0)| ≤ n!

Rn
sup
z∈C
|f(z)|

Proof. Simply apply Cauchy’s Integral formula

|f (n)(z0)| =
∣∣∣∣ n!

2πi

∫
C

f(z)

(z − z0)n+1
dz

∣∣∣∣ =
n!

2π

∣∣∣∣∫ 2π

0

f(z0 +Reiϕ

(Reiϕ)n+1
dϕ

∣∣∣∣ ≤ n!

2π

1

Rn
l([0, 2π]) sup

z∈C
|f(z)|

Theorem (Liouville’s Theorem) If f is entire and bounded then f is con-
stant

Theorem (Fundamental Theorem of Algebra)
Every nonconstant polynomial with complex coefficients has at least one com-
plex root

Theorem On convergence of the taylor series of holomorphic functions
Let f be holomorphic in DR(z0) then the Taylor series for f around z0 con-
verges for every z ∈ DR(z0). This theorem implies that Taylor series will
converge to f(z) everywhere inside the largest open disk centered at z0, over
which f is holomorphic.

Theorem On the convergence of the Laurent series Let f be holomorphic in
an annulus or punctured disc D∗ = {z ∈ C : r < |z − z0| < R} then f can be
expressed there as the sum of two series which converges in to f in D∗

f(z) =
∞∑
j=0

aj(z − z0)j +
∞∑
j=1

a−j(z − z0)−j =
∞∑

j=−∞

aj(z − z0)j
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whose coefficients are given by

aj =
1

2πi

∫
C

f(w)

w − z
dw

for any closed curve C in D∗ positively oriented around z0

Meromorphic functions and Residuals

An isolated singularity of a complex function is a point z0 such that f can
be defined in some neighbourhood of the point but not at the point itself.
There are three types

1. z0 is a removable singularity iff |f | is bounded near z0 iff f has a limit
as z → z0 iff f can be redefined so that it is holomorphic at z0

2. z0 is a pole iff |f(z)| → ∞ as z → z0 iff f can be written g(z)
(z−z0)n

for
some n ∈ N and holomorphic function g : g(z0) 6= 0

3. A singularity which is neither of the above is called an essential sin-
gularity

Theorem (Picard’s Theorem) A function with an essential singularity as-
sumes every complex number, with possibly one exception, as a vlue in any
open neighbourhood of this singularity.

Theorem If f has a pole of order n at z0 then

Res[f ; z0] = lim
z→z0

1

(n− 1)!

(
d

dz

)n−1

(z − z0)nf(z)

Residual formula If f is holomorphic in an open set containing contour Γ
with positive orientation and its interior, except for a finite number of poles
z0, ..., zn inside Γ then ∫

Γ

f(z)dz = 2πi
n∑
k=1

Res[f ; zk]
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Jordan’s Lemma If m > 0 and P,Q are two polynomials such that

deg(Q) ≥ 1 + deg(P )

then
lim
ρ→∞

∫
C+
ρ

eimz
P (z)

Q(z)
dz = 0

Where C+
ρ denotes the upper half-circle of radius ρ.

Definition A function f on open set Ω is meromorphic if there is a set
A ⊂ Ω such that

1. A has no limit points in Ω

2. f has poles at every point of A

3. f is holomorphic in Ω r A

Remark This implies that every holomorphic function is meromorphic as
well.

Theorem (Argument principle)
If f is holomorphic on the positively oriented closed curve Γ and merormorphic
in its interior then

N0(f)−Np(f) =
1

2πi

∫
Γ

f ′(z)

f(z)
dz

Where N0(f) denotes the number of zeros of f inside Γ and Np(f) denotes
the number of poles of f inside Γ. (Multiplicities of zeros and poles inclu-
ded)

Corollary If f is holomorphic on and inside the positively oriented closed
curve Γ then

N0(f) =
1

2πi

∫
Γ

f ′(z)

f(z)
dz

Theorem (Rouché’s Theorem)
If f and g are holomorphic on and inside the positively oriented closed curve
Γ and if

|h(z)| ≤ |f(z)| on Γ

Then
N0(f) = N0(f + h) inside Γ

12



KTH Johan Ericsson

Theorem (Open mapping theorem) If f is holomorphic and non-constant in
a domain (connected open set) Ω then f is open. (i.e. maps open sets to open
sets)

Theorem (Maximum modulus principle) If f is a non-constant holomorphic
function in a domain Ω then f cannot attain a maximum in Ω.

Conformal Mappings

A linear fractional transformation commononly denoted Möbius trans-
formation is a mapping in the form

w = S(z) =
az + b

cz + d

With ad 6= bc. And has the inverse

z = S−1(w) =
dw − b
−cw + a

Theorem Let S be a möbius transformation then

1. S maps the class of circles and lines to itself. If a circle or a line passes
through the pole z = −d/c of S then it gets mapped to as straight line.
Any line or circle that avoids the pole of S will be mapped to a circle.

2. S maps the extended complex plane innjectively onto itself.

A conformal mapping maps the left region of a curve to the left region of its
picture.

The cross ratio Given three points z2, z3, z4 in the extended complex plane
there is a linear transformation S which carries the points into 1, 0,∞ in this
order. If none of the points is ∞ then

S(z) =
z − z3

z − z4

z2 − z3

z2 − z4

If one of the points z2, z3, z4 is ∞ (only one can be) then in order

S(z) =
z − z3

z − z4

, S(z) =
z2 − z4

z − z4

, S(z) =
z − z3

z2 − z3

The image of z1 under the above transformation is called the cross ratio,
denoted (z1, z2, z3, z4)
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Appendix

Lemma: If f ∈ H(Ω) has a Primitive F and γ is a piecewise smooth curve
in Ω with endpoints w1, w2 then:∫

γ

f(z)dz = F (w2)− F (w1)

ADD PROOF OF GOURSAT
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